【題目】楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家,數(shù)學(xué)教育家.楊輝三角是楊輝的一大重要研究成果,其中蘊(yùn)含了許多優(yōu)美的規(guī)律.古今中外,許多的數(shù)學(xué)家都曾對(duì)其深入研究過,并將研究結(jié)果應(yīng)用于實(shí)踐.其中楊輝三角如下
(1)第5行的數(shù)和為________
(2)觀察每行數(shù)的和,并歸納出第行數(shù)的和為________
(3)第三斜行的數(shù)分別為1,3,6,10,…,請(qǐng)依此規(guī)律寫出第5個(gè)數(shù)為 .請(qǐng)歸納得出第三斜行第個(gè)數(shù)的表達(dá)式________(用含有的表達(dá)式表示)
【答案】(1)16;(2)2n1;(3)15,
【解析】
(1)根據(jù)有理數(shù)加法將第五行的數(shù)相加即可;
(2)根據(jù)前幾行數(shù)的和的規(guī)律,后一個(gè)數(shù)是前一個(gè)數(shù)的2倍,即可求得第n行數(shù)的和;
(3)根據(jù)第三斜行的數(shù)的規(guī)律即可求得第5個(gè)數(shù)以及第三斜行第n個(gè)數(shù)的表達(dá)式.
解:(1)第五行數(shù)的和為:1+4+6+4+1=16.
故答案為16.
(2)∵第一行數(shù)的和為1=20,第二行數(shù)的和為2=21,第三行數(shù)的和為4=22,
第四行數(shù)的和為8=23,第五行數(shù)的和為16=24,…
∴第n行數(shù)的和為2n1.
故答案為:2n1.
(3)第三斜行的數(shù):1,3=1+2,6=1+2+3,
10=1+2+3+4,
∴第5個(gè)數(shù)為1+2+3+4+5=15,
∴第三斜行第n個(gè)數(shù)為1+2+3+4+5+…+n=
故答案為:15,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O和⊙O上的一點(diǎn)A,作⊙O的內(nèi)接正方形和內(nèi)接正六邊形(點(diǎn)A為正方形和正六邊形的頂點(diǎn)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)問題中,我們常用幾何方法解決代數(shù)問題,借助數(shù)形結(jié)合的方法使復(fù)雜問題簡(jiǎn)單化.
材料一:我們知道|a|的幾何意義是:數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離;|a﹣b|的幾何意義是:數(shù)軸上表示數(shù)a,b的兩點(diǎn)之間的距離;|a+b|的幾何意義是:數(shù)軸上表示數(shù)a,﹣b的兩點(diǎn)之間的距離;根據(jù)絕對(duì)值的幾何意義,我們可以求出以下方程的解.
(1)|x﹣3|=4
解:由絕對(duì)值的幾何意義知:
在數(shù)軸上x表示的點(diǎn)到3的距離等于4
∴x1=3+4=7,x2=3﹣4=﹣1
(2)|x+2|=5
解:∵|x+2|=|x﹣(﹣2)|,∴其絕對(duì)值的幾何意義為:在數(shù)軸上x表示的點(diǎn)到﹣2的距離等于5.∴x1=﹣2+5=3,x2=﹣2﹣5=﹣7
材料二:如何求|x﹣1|+|x+2|的最小值.
由|x﹣1|+|x+2|的幾何意義是數(shù)軸上表示數(shù)x的點(diǎn)到表示數(shù)1和﹣2兩點(diǎn)的距離的和,要使和最小,則表示數(shù)x的這點(diǎn)必在﹣2和1之間(包括這兩個(gè)端點(diǎn))取值.
∴|x﹣1|+|x+2|的最小值是3;由此可求解方程|x﹣1|+|x+2|=4,把數(shù)軸上表示x的點(diǎn)記為點(diǎn)P,由絕對(duì)值的幾何意義知:當(dāng)﹣2≤x≤1時(shí),|x﹣1|+|x+2|恒有最小值3,所以要使|x﹣1|+|x+2|=4成立,則點(diǎn)P必在﹣2的左邊或1的右邊,且到表示數(shù)﹣2或1的點(diǎn)的距離均為0.5個(gè)單位.
故方程|x﹣1|+|x+2|=4的解為:x1=﹣2﹣0.5=﹣2.5,x2=1+0.5=1.5.
閱讀以上材料,解決以下問題:
(1)填空:|x﹣3|+|x+2|的最小值為 ;
(2)已知有理數(shù)x滿足:|x+3|+|x﹣10|=15,有理數(shù)y使得|y﹣3|+|y+2|+|y﹣5|的值最小,求x﹣y的值.
(3)試找到符合條件的x,使|x﹣1|+|x﹣2|+…+|x﹣n|的值最小,并求出此時(shí)的最小值及x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一輛列車在某次運(yùn)行中速度(千米/小時(shí))關(guān)于時(shí)間(分鐘)的圖象,根據(jù)圖象回答下列問題.
(1)列車共運(yùn)行了多少分鐘?
(2)列車開動(dòng)后,勻速行駛了幾分鐘?第3分鐘時(shí)的速度是多少?
(3)列車的速度從0千米/小時(shí)加速到300千米/小時(shí),共用了多長(zhǎng)時(shí)間?
(4)列車從第幾分鐘開始減速?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF與六邊形A′B′C′D′E′F′相似.
求:(1)相似比;
(2)∠A和∠B′的度數(shù);
(3)邊CD,EF,A′F′,E′D′的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊三角板重疊放置,其中∠C=∠BDE=90°,∠A=45°,∠E=30°,AB=DE=6,求重疊部分四邊形DBCF的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)E,F分別在AB,CD上,AF⊥CE,垂足為點(diǎn)O,∠1=∠B,
∠A+∠2=90°.求證:AB∥CD.
證明:如圖,
∵∠1=∠B(已知)
∴CE∥BF(同位角相等,兩直線平行)
______________
∴∠AFC+∠2=90°(等式性質(zhì))
∵∠A+∠2=90°(已知)
∴∠AFC=∠A(同角或等角的余角相等)
∴AB∥CD(內(nèi)錯(cuò)角相等,兩直線平行)
請(qǐng)你仔細(xì)觀察下列序號(hào)所代表的內(nèi)容:
①∴∠AOE=90°(垂直的定義)
②∴∠AFB=90°(等量代換)
③∵AF⊥CE(已知)
④∵∠AFC+∠AFB+∠2=180°(平角的定義)
⑤∴∠AOE=∠AFB(兩直線平行,同位角相等)
橫線處應(yīng)填寫的過程,順序正確的是( 。
A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提升學(xué)生的藝術(shù)素養(yǎng),學(xué)校計(jì)劃開設(shè)四門藝術(shù)選修課:A.書法;B.繪畫;C.樂器;D.舞蹈.為了解學(xué)生對(duì)四門功課的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).將數(shù)據(jù)進(jìn)行整理,并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有多少人?扇形統(tǒng)計(jì)圖中∠α的度數(shù)是多少?
(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)學(xué)校為舉辦2018年度校園文化藝術(shù)節(jié),決定從A.書法;B.繪畫;C.樂器;D.舞蹈四項(xiàng)藝術(shù)形式中選擇其中兩項(xiàng)組成一個(gè)新的節(jié)目形式,請(qǐng)用列表法或樹狀圖求出選中書法與樂器組合在一起的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,,,是上的一個(gè)動(dòng)點(diǎn),由向運(yùn)動(dòng)(與、不重合),速度為每秒,是延長(zhǎng)線上一點(diǎn),與點(diǎn)以相同的速度由向延長(zhǎng)線方向運(yùn)動(dòng)(不與重合),連結(jié)交AB于.
(1)如圖1,若,,求點(diǎn)P運(yùn)動(dòng)幾秒后,.
(2)在(1)的條件下,作于F,在運(yùn)動(dòng)過程中,線段長(zhǎng)度是否發(fā)生變化,如果不變,求出的長(zhǎng);如果變化,請(qǐng)說明理由.
(3)如圖3,當(dāng)時(shí),平行四邊形的面積是,那么在運(yùn)動(dòng)中是否存在某一時(shí)刻,點(diǎn)P,Q關(guān)于點(diǎn)E成中心對(duì)稱,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com