【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC和△DEF的頂點(diǎn)都在格點(diǎn)上,P1、P2、P3、P4、P5是△DEF邊上的5個(gè)格點(diǎn),請按要求完成下列各題:
(1)試證明△ABC為直角三角形;
(2)判斷△ABC和△DEF是否相似,并說明理由;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查,已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:
身高情況分組表(單位:cm)
組別 | 身高 |
A | x<160 |
B | 160≤x<165 |
C | 165≤x<170 |
D | 170≤x<175 |
E | x≥175 |
根據(jù)圖表提供的信息,回答下列問題:
(1)樣本中,男生的身高眾數(shù)在 組,中位數(shù)在 組;
(2)樣本中,女生身高在E組的人數(shù)有 人;
(3)已知該校共有男生600人,女生480人,請估計(jì)身高在165≤x<175之間的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,0)、B(﹣2,3)、C(﹣1,0)
(1)畫出△ABC向下平移3個(gè)單位的△A1B1C1;
(2)將△A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后的△A2B2C2;
(3)在(2)中,線段A1B1 掃過的面積為 .(設(shè)圖中小正方的邊長為1個(gè)單位長度)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列條件:①∠1=∠3,②∠2+∠4=180°,③∠4=∠5,④∠2=∠3,⑤∠6=∠2+∠3,能判斷直線l1∥l2的個(gè)數(shù)是( )
A. 5B. 4C. 3D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種新運(yùn)算:a⊕b=
(1)請寫出函數(shù)y=x⊕1的解析式,并在所給的平面直角坐標(biāo)系中畫出該函數(shù)圖象;
(2)觀察(1)中圖象,探究得到y的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BC=3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒2cm的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC力向以每秒1cm的速度向終點(diǎn)C運(yùn)動(dòng),將△PQC翻折,點(diǎn)P的對應(yīng)點(diǎn)為R,設(shè)點(diǎn)Q運(yùn)動(dòng)的時(shí)間為t秒,若四邊形PCRQ為菱形,則t的值為( 。
A. B. 2C. 1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(操作發(fā)現(xiàn))
如圖 1,在邊長為 1 個(gè)單位長度的小正方形組成的網(wǎng)格中,ABC 的三個(gè)頂點(diǎn)均在格點(diǎn)上.現(xiàn)將ABC 繞點(diǎn) A 按順時(shí)針方向旋轉(zhuǎn) 90°,點(diǎn) B 的對應(yīng)點(diǎn)為 B′,點(diǎn) C 的對應(yīng)點(diǎn)為 C′, 連接 BB′,如圖所示則∠AB′B= .
(2)(解決問題)
如圖 2,在等邊ABC 內(nèi)有一點(diǎn) P,且 PA=2,PB= ,PC=1,如果將△BPC 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn) 60°得出△ABP′,求∠BPC 的度數(shù)和 PP′的長;
(3)(靈活運(yùn)用)
如圖 3,將(2)題中“在等邊ABC 內(nèi)有一點(diǎn) P 改為“在等腰直角三角形 ABC 內(nèi)有一點(diǎn)P”,且 BA=BC,PA=6,BP=4,PC=2,求∠BPC 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小俊在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進(jìn)12米到達(dá)C處,又測得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果精確到0.1米)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com