【題目】如圖,在ABCD中,AD=2AB,F(xiàn)AD的中點,EAB上一點,連接CF、EF、EC,且CF=EF,下列結論正確的個數(shù)是( 。

①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

①只要證明DF=DC,利用平行線的性質可得∠DCF=DFC=FCB;

②延長EFCD交于M,根據(jù)平行四邊形的性質得出ABCD,根據(jù)平行線的性質得出∠A=FDM,證EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=FCD=CFD,根據(jù)三角形的外角性質求出即可;

③④求出∠ECD=90°,根據(jù)平行線的性質得出∠BEC=ECD,即可得出答案.

解:∵四邊形ABCD是平行四邊形,

AB=CD,ADBC,

AF=DF,AD=2AB,

DF=DC,

∴∠DCF=DFC=FCB,

CF平分∠BCD,故①正確,

延長EFCD交于M,

∵四邊形ABCD是平行四邊形,

ABCD,

∴∠A=FDM,

EAFMDF中,

∴△EAF≌△MDF(ASA),

EF=MF,

EF=CF,

CF=MF,

∴∠FCD=M,

∵由(1)知:∠DFC=FCD,

∴∠M=FCD=CFD,

∵∠EFC=M+FCD=2CFD;故②正確,

EF=FM=CF,

∴∠ECM=90°,

ABCD,

∴∠BEC=ECM=90°,

CEAB,故③④正確,

故選:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】設A1,A2,A3,A4是數(shù)軸上的四個不同點,若|A1A3|=λ|A1A2|,|A1A4|=η|A1A2|,且,則稱A3,A4調和分割A1,A2.已知平面上的點C,D調和分割點A,B,則( )

A. 點C可能是線段AB的中點

B. 點C,D可能同時在線段AB上

C. 點D一定不是線段AB的中點

D. 點C,D可能同時在線段AB的延長線上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中.過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的周長的數(shù)值與面積的數(shù)值相等,則這個點叫做和諧點.例如.圖中過點P分別作x軸,y軸的垂線.與坐標軸圍成矩形OAPB的周長的數(shù)值與面積的數(shù)值相等,則點P是和諧點.
(1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;
(2)若和諧點P(a,3)在直線y=﹣x+b(b為常數(shù))上,求a,b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊余料ABCD,ADBC,現(xiàn)進行如下操作:以點B為圓心,適當長為半徑畫弧,分別交BA,BC于點GH;再分別以點GH為圓心,大于GH的長為半徑畫弧,兩弧在ABC內部相交于點O,畫射線BO,交AD于點E

1)求證:AB=AE

2)若∠A=100°,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.

(1)試判斷直線ABCD的位置關系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EPCD交于點G,點HMN上的一點且GHEG.求證:PFGH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,O是等邊△ABC內一點,連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點B順時針旋轉后得到△BCD,連接OD.求:

旋轉角的度數(shù);

線段OD的長;

③∠BDC的度數(shù).

(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內一點,連接OA、OB、OC,將△BAO繞點B順時針旋轉后得到△BCD,連接OD.當OA、OB、OC滿足什么條件時,∠ODC=90°?請給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】射線繞原點從數(shù)軸的正半軸逆時針旋轉一定的角度),射線上的一點與原點的距離()為,并規(guī)定:當時,點的位置記作;當時,點的位置記作.如圖,點、的位置表示為.回答下列問題:

(1)已知點,點,則點與點的距離為 ;線段的中點的位置是( , ).

(2)已知點,點,,點點出發(fā),以每秒2個單位長度的速度在線段上來回運動;同時射線以每秒10°的速度繞原點逆時針旋轉,當時間(其中)為何值時,?并求出此時三角形的面積.

(3)直接寫出位置滿足的所有點所圍成的圖形面積.(結果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有下列四種結論:①AB=AD;②∠B=∠D;③∠BAC=∠DAC;④BC=DC.以其中的2個結論作為依據(jù)不能判定△ABC≌△ADC的是(  )

A. ①② B. ①③ C. ①④ D. ②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 我們知道在同一平面內,兩條平行直線的交點有0個,兩條相交直線的交點有1個,平面內三條平行直線的交點有0個,經(jīng)過同一點的三條直線的交點有1個……

(1)平面上有三條互不重合的直線,請畫圖探究它們的交點個數(shù);

(2)若平面內的五條直線恰有4個交點,請畫出符合條件的所有圖形;

(3)在平面內畫出10條直線,使它們的交點個數(shù)恰好是32.

查看答案和解析>>

同步練習冊答案