【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC邊于點(diǎn)D,過(guò)點(diǎn)C作CF∥AB,與過(guò)點(diǎn)B的切線交于點(diǎn)F,連接BD.
(1)求證:BD=BF;
(2)若AB=10,CD=4,求BC的長(zhǎng).

【答案】
(1)證明:∵AB是⊙O的直徑,

∴∠BDA=90°,

∴BD⊥AC,∠BDC=90°,

∵BF切⊙O于B,

∴AB⊥BF,

∵CF∥AB,

∴CF⊥BF,∠FCB=∠ABC,

∵AB=AC,

∴∠ACB=∠ABC,

∴∠ACB=∠FCB,

∵BD⊥AC,BF⊥CF,

∴BD=BF


(2)解:∵AB=10,AB=AC,

∴AC=10,

∵CD=4,

∴AD=10﹣4=6,

在Rt△ADB中,由勾股定理得:BD= =8,

在Rt△BDC中,由勾股定理得:BC= =4


【解析】(1)根據(jù)圓周角定理求出BD⊥AC,∠BDC=90°,根據(jù)切線的性質(zhì)得出AB⊥BF,求出∠ACB=∠FCB,根據(jù)角平分線性質(zhì)得出即可;(2)求出AC=10,AD=6,根據(jù)勾股定理求出BD,再根據(jù)勾股定理求出BC即可.
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和切線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某校舉行的“中國(guó)學(xué)生營(yíng)養(yǎng)日”活動(dòng)中,設(shè)計(jì)了抽獎(jiǎng)環(huán)節(jié):在一只不透明的箱子中有3個(gè)球,其中2個(gè)紅球,1個(gè)白球,它們除顏色外均相同.
(1)隨機(jī)摸出一個(gè)球,恰好是紅球就能中獎(jiǎng),則中獎(jiǎng)的概率是多少?
(2)同時(shí)摸出兩個(gè)球,都是紅球 就能中特別獎(jiǎng),則中特別獎(jiǎng)的概率是多少?(要求畫(huà)樹(shù)狀圖或列表求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某中學(xué)決定在學(xué)生中開(kāi)展丟沙包、打籃球、跳大繩和踢毽球四種項(xiàng)目的活動(dòng),為了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)調(diào)查了該校m 名學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇四種活動(dòng)項(xiàng)目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計(jì)圖表:
學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表


根據(jù)圖表中提供的信息,解答下列問(wèn)題:
(1)m=;n=;p=.
(2)請(qǐng)根據(jù)以上信息直接補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校2000 名學(xué)生中有多少名學(xué)生最喜歡跳大繩.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸的負(fù)半軸、y軸的正半軸上,點(diǎn)B在第二象限.將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在y軸上,得到矩形ODEF,BC與OD相交于點(diǎn)M.若經(jīng)過(guò)點(diǎn)M的反比例函數(shù)y= (x<0)的圖象交AB于點(diǎn)N,S矩形OABC=32,tan∠DOE= ,則BN的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,添加下列條件不能判定ABCD是菱形的只有(
A.AC⊥BD
B.AB=BC
C.AC=BD
D.∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣ x+c與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B,拋物線y=﹣ x2+bx+c經(jīng)過(guò)點(diǎn)A,B.

(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;
(2)M(m,0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)P,N.
①點(diǎn)M在線段OA上運(yùn)動(dòng),若以B,P,N為頂點(diǎn)的三角形與△APM相似,求點(diǎn)M的坐標(biāo);
②點(diǎn)M在x軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn)M,P,N中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱M,P,N三點(diǎn)為“共諧點(diǎn)”.請(qǐng)直接寫(xiě)出使得M,P,N三點(diǎn)成為“共諧點(diǎn)”的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,點(diǎn)E在AD邊上運(yùn)動(dòng),且不與點(diǎn)A和點(diǎn)D重合,連結(jié)CE,過(guò)點(diǎn)C作CF⊥CE交AB的延長(zhǎng)線于點(diǎn)F,EF交BC于點(diǎn)G.

(1)求證:△CDE≌△CBF;
(2)當(dāng)DE= 時(shí),求CG的長(zhǎng);
(3)連結(jié)AG,在點(diǎn)E運(yùn)動(dòng)過(guò)程中,四邊形CEAG能否為平行四邊形?若能,求出此時(shí)DE的長(zhǎng);若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=1,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù) 的圖象如圖所示,點(diǎn)A0位于坐標(biāo)原點(diǎn),點(diǎn)A1 , A2 , A3 , …,A2008在y軸的正半軸上,點(diǎn)B1 , B2 , B3 , …,B2008在二次函數(shù) 位于第一象限的圖象上,若△A0B1A1 , △A1B2A2 , △A2B3A3 , …,△A2007B2008A2008都為等邊三角形,則△A2007B2008A2008的邊長(zhǎng)=

查看答案和解析>>

同步練習(xí)冊(cè)答案