【題目】電腦系統(tǒng)中有個(gè)掃雷游戲,要求游戲者標(biāo)出所有的雷,游戲規(guī)則:一個(gè)方塊下面最多埋一個(gè)雷,如果無雷,掀開方塊下面就標(biāo)有數(shù)字,提醒游戲者此數(shù)字周圍的方塊(最多八個(gè))中雷的個(gè)數(shù)(實(shí)際游戲中,0通常省略不標(biāo),為方便大家識別與印刷,我把圖乙中的0都標(biāo)出來了,以示與未掀開者的區(qū)別),如圖甲中的“3”表示它的周圍八個(gè)方塊中僅有3個(gè)埋有雷.圖乙是張三玩游戲中的局部,圖中有4個(gè)方塊己確定是雷(方塊上標(biāo)有旗子),則圖乙第一行從左數(shù)起的七個(gè)方塊中(方塊上標(biāo)有字母),能夠確定一定是雷的有

   .(請?zhí)钊敕綁K上的字母)

【答案】B、DF、G

【解析】

根據(jù)掃雷規(guī)則逐個(gè)判斷.

圖乙中最左邊的“1”和最右邊的“1”,可得如下推斷:

由第三行最左邊的“1”,可得它的上方必定是雷.

結(jié)合B下方的“2”,可得最左邊的A、B對應(yīng)的方格中有一個(gè)雷;

同理可得最右邊的“4”周圍4個(gè)方格中有3個(gè)雷,中間DE對應(yīng)方格中有一個(gè)雷;

由于B下方的“2”和第二行最右邊的“2”,它們周圍的雷已經(jīng)夠數(shù),

所以C對應(yīng)的方格肯定不是雷.

進(jìn)行下一步推理:

因?yàn)?/span>C對應(yīng)的方格不是雷,所以C下方“2”的左上、右上的方格,即B、D都是雷;

B下方的“2”的周圍的雷也已經(jīng)夠數(shù),所以A對應(yīng)的方格也不是雷.

因?yàn)?/span>D下方的“2”,它的周圍的雷已經(jīng)夠數(shù),可得E對應(yīng)的方格不是雷,

根據(jù)F下方的“4”周圍應(yīng)該有4個(gè)雷,結(jié)合E不是雷,可得F、G對應(yīng)的方格都是雷.

綜上所述,A、CE對應(yīng)的方格不是雷,且B、D、F、G對應(yīng)的方格是雷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育老師統(tǒng)計(jì)了七年級甲、乙兩個(gè)班女生的身高,并繪制了以下不完整的統(tǒng)計(jì)圖.

請根據(jù)圖中信息,解決下列問題:

1)兩個(gè)班共有女生多少人?

2)將頻數(shù)分布直方圖補(bǔ)充完整;

3)求扇形統(tǒng)計(jì)圖中部分所對應(yīng)的扇形圓心角度數(shù);

4)身高在5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機(jī)抽取兩人補(bǔ)充到學(xué)校國旗隊(duì).請用列表法或畫樹狀圖法,求這兩人來自同一班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

1)如圖1,分別求的值;

2)如圖2,點(diǎn)為第一象限的拋物線上一點(diǎn),連接并延長交拋物線于點(diǎn),,求點(diǎn)的坐標(biāo);

3)在(2)的條件下,點(diǎn)為第一象限的拋物線上一點(diǎn),過點(diǎn)軸于點(diǎn),連接,點(diǎn)為第二象限的拋物線上一點(diǎn),且點(diǎn)與點(diǎn)關(guān)于拋物線的對稱軸對稱,連接,設(shè),,點(diǎn)為線段上一點(diǎn),點(diǎn)為第三象限的拋物線上一點(diǎn),分別連接,滿足,,過點(diǎn)的平行線,交軸于點(diǎn),求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,OB=1,∠OBC=60°

1)如圖1,求直線BC的解析式;

2)如圖1,線段AC上方拋物線上有一動(dòng)點(diǎn)P,PDx軸于點(diǎn)H,交線段AC于點(diǎn)D,直線BGAC,交拋物線于點(diǎn)G,點(diǎn)F是直線BC上一動(dòng)點(diǎn),FEBCAC于點(diǎn)E,點(diǎn)Q是點(diǎn)A關(guān)于直線BG的對稱點(diǎn),連接PEQF.當(dāng)線段PD取最大值時(shí),求PE+EF+QF的最小值及點(diǎn)E的坐標(biāo);

3)如圖2,將BOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至B′O C′的位置,點(diǎn)B、C的對應(yīng)點(diǎn)分別為點(diǎn)B′C′,點(diǎn)B′恰好落在BC上.將B′O C′沿直線AC平移,得到B′′O ′ C′′,點(diǎn)B′、C′、O的對應(yīng)點(diǎn)分別為點(diǎn)B′′、C′′、O ′,連接B ′ B′′、B ′C′′B ′B′′C′′是否能為等腰三角形?若能,請直接寫出所有符合條件的C′′的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O中,AC為直徑,MA、MB分別切O于點(diǎn)A、B

)如圖,若BAC=250,求AMB的大。

)如圖,過點(diǎn)BBDAC于點(diǎn)E,交O于點(diǎn)D,若BD=MA,求AMB的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在矩形ABCD中,E為邊BC上的一點(diǎn),AE⊥DE,AB=12,BE=16,F(xiàn)為線段BE上一點(diǎn),EF=7,連接AF.如圖1,現(xiàn)有一張硬紙片△GMN,∠NGM=900,NG=6,MG=8,斜邊MN與邊BC在同一直線上,點(diǎn)N與點(diǎn)E重合,點(diǎn)G在線段DE上.如圖2,△GMN從圖1的位置出發(fā),以每秒1個(gè)單位的速度沿EB向點(diǎn)B勻速移動(dòng),同時(shí),點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿AD向點(diǎn)D勻速移動(dòng),點(diǎn)Q為直線GN與線段AE的交點(diǎn),連接PQ.當(dāng)點(diǎn)N到達(dá)終點(diǎn)B時(shí),△GMNP和點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答問題:

(1)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)點(diǎn)G在線段AE上時(shí),求t的值;

(2)在整個(gè)運(yùn)動(dòng)過程中,是否存在點(diǎn)P,使△APQ是等腰三角形,若存在,求出t的值;若不存在,說明理由;

(3)在整個(gè)運(yùn)動(dòng)過程中,設(shè)△GMN與△AEF重疊部分的面積為S,請直接寫出S與t的函數(shù)關(guān)系式以及自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的邊AC為直徑的O恰為ABC的外接圓,∠ABC的平分線交O于點(diǎn)D,過點(diǎn)DDEACBC的延長線于點(diǎn)E

1)求證:DE是⊙O的切線;

2)若AB4,BC2,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級一班開展了讀一本好書的活動(dòng),班委會(huì)對學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了小說戲劇、散文其他四個(gè)類別,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.根據(jù)圖表提供的信息,回答下列問題:

類別

頻數(shù)(人數(shù))

頻率

小說

0.5

戲劇

4

散文

10

0.25

其他

6

合計(jì)

m

1

1)計(jì)算m   ;

2)在扇形統(tǒng)計(jì)圖中,其他類所占的百分比為  ;

3)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了戲劇類,現(xiàn)從中任意選出2名同學(xué)參加學(xué)校的戲劇社團(tuán),請用畫樹狀圖或列表的方法,求選取的2人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(﹣2,1),B1,n)兩點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案