【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點
(1)已知點M,N是線段AB的勾股分割點,若AM=3,MN=4求BN的長;
(2)已知點C是線段AB上的一定點,其位置如圖2所示,請在BC上畫一點D,使C,D是線段AB的勾股分割點(要求尺規(guī)作圖,保留作圖痕跡,畫出一種情形即可)
(3)如圖3,正方形ABCD中,M,N分別在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分別交BD于E,F(xiàn)
求證:①E、F是線段BD的勾股分割點;
②△AMN的面積是△AEF面積的兩倍.
【答案】
(1)
解:解:(1)①當MN為最大線段時,
∵點M,N是線段AB的勾股分割點,
∴BM= = = ,
②當BN為最大線段時,
∵點M,N是線段AB的勾股分割點,
∴BN= = =5,
綜上,BN= 或5;
(2)
解:作法:①在AB上截取CE=CA;
②作AE的垂直平分線,并截取CF=CA;
③連接BF,并作BF的垂直平分線,交AB于D;
點D即為所求;如圖2所示.
(3)
解:①如圖3中,將△ADF繞點A順時針旋轉(zhuǎn)90°得到△ABH,連接HE.
∵∠DAF+∠BAE=90°﹣∠EAF=45°,∠DAF=∠BAE,
∴∠EAH=∠EAF=45°,
∵EA=EA,AH=AD,
∴△EAH≌△EAF,
∴EF=HE,
∵∠ABH=∠ADF=45°=∠ABD,
∴∠HBE=90°,
在Rt△BHE中,HE2=BH2+BE2,
∵BH=DF,EF=HE,
∵EF2=BE2+DF2,
∴E、F是線段BD的勾股分割點.
②證明:如圖4中,連接FM,EN.
∵四邊形ABCD是正方形,
∴∠ADC=90°,∠BDC=∠ADB=45°,
∵∠MAN=45°,
∴∠EAN=∠EDN,∵∠AFE=∠FDN,
∴△AFE∽△DFN,
∴∠AEF=∠DNF, = ,
∴ = ,∵∠AFD=∠EFN,
∴△AFD∽△EFN,
∴∠DAF=∠FEN,
∵∠DAF+∠DNF=90°,
∴∠AEF+∠FEN=90°,
∴∠AEN=90°
∴△AEN是等腰直角三角形,
同理△AFM是等腰直角三角形;
∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,
∴AM= AF,AN= AE,
∵S△AMN= AMANsin45°,
S△AEF= AEAFsin45°,
∴ = =2,
∴S△AMN=2S△AEF.
【解析】(1)①當MN為最大線段時,由勾股定理求出BN;②當BN為最大線段時,由勾股定理求出BN即可;(2)①在AB上截取CE=CA;②作AE的垂直平分線,并截取CF=CA;③連接BF,并作BF的垂直平分線,交AB于D;(3)①如圖3中,將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE,只要證明△EAH≌△EAF,推出EF=HE,再證明∠HBE=90°即可.②如圖4中,連接FM,EN.首先證明△AEN是等腰直角三角形,△AFM是等腰直角三角形,推出AM= AF,AN= AE,由S△AMN= AMANsin45°,S△AEF= AEAFsin45°,即可解決問題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了減輕學(xué)生課業(yè)負擔(dān),提高課堂效果,我縣教體局積極推進 “高效課堂”建設(shè).
某學(xué)校的《課堂檢測》印刷任務(wù)原來由甲復(fù)印店承接,其每月收費y(元)與復(fù)印頁數(shù)x(頁)的函數(shù)關(guān)系如圖所示:
⑴從圖象中可看出:每月復(fù)印超過500頁部分每頁收費 元;
⑵現(xiàn)在乙復(fù)印店表示:若學(xué)校先按每月付給200元的月承包費,則可按每頁0.15元收費.乙復(fù)印店每月收費y(元)與復(fù)印頁數(shù)x(頁)的函數(shù)關(guān)系為 ;
⑶在給出的坐標系內(nèi)畫出(2)中的函數(shù)圖象,并結(jié)合函數(shù)圖象回答每月復(fù)印在3000頁左右應(yīng)選擇哪個復(fù)印店?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,將一塊腰長為 的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標軸上,直角頂點C的坐標為(﹣1,0),點B在拋物線y=ax2+ax﹣2上.
(1)點A的坐標為 , 點B的坐標為;
(2)拋物線的解析式為;
(3)設(shè)(2)中拋物線的頂點為D,求△DBC的面積;
(4)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC.
(1)發(fā)現(xiàn):如圖1,當點E在AB上且點C和點D重合時,若點M、N分別是DB、EC的中點,則MN與EC的位置關(guān)系是 ,MN與EC的數(shù)量關(guān)系是 .
(2)探究:若把(1)小題中的△AED繞點A順時針旋轉(zhuǎn)45°得到的圖2,連接BD和EC,并連接DB、EC的中點M、N,則MN與EC的位置關(guān)系和數(shù)量關(guān)系仍然能成立嗎?若成立,請給予證明,若不成立,請說明理由.
(3)若把(1)小題中的△AED繞點A逆時針旋轉(zhuǎn)45°得到的圖3,連接BD和EC,并連接DB、EC的中點M、N,則MN與EC的位置關(guān)系和數(shù)量關(guān)系仍然能成立嗎?若成立,請給予證明,若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的圓O與AD、AC分別交于點E、F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB= ,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù) a、b、c 在數(shù)軸上對應(yīng)的點的位置,如圖所示:① abc<0;② |a-b|+|b-c|=|a-c|;③ (a-b)(b-c)(c-a)>0;④ |a|<1-bc,以上四個結(jié)論正確的有( )個
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果直角三角形一條直角邊長為23,斜邊和另一條直角邊長的長度都是整數(shù),則這個直角三角形斜邊的長為_________________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)1至2018按一定規(guī)律排列如下表:
平移表中帶陰影的方框,方框中三個數(shù)的和可能是( 。
A. 2018 B. 2019 C. 2040 D. 2049
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了豐富學(xué)生的校園生活,準備購進一批籃球和足球.其中籃球的單價比足球的單價多40元,用1500元購進的籃球個數(shù)與900元購進的足球個數(shù)相等.
(1)籃球和足球的單價各是多少元?
(2)該校打算用1000元購買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購買方案有哪幾種?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com