如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點C的坐標(biāo)為(3,-1).
(1)將△ABC的頂點A平移到點A1,畫出平移后的△A1B1C1,并寫出C1的坐標(biāo)
 
,將△ABC平移的距離是
 

(2)畫出△A1B1C1繞點O旋轉(zhuǎn)180°的△A2B2C2,并寫出點C2的坐標(biāo)
 
.如果△A1B1C1中任意一點M1的坐標(biāo)為(x,y),那么它的對應(yīng)點M2的坐標(biāo)是
 

(3)在第二象限以原點O為位似中心,將△ABC放大,使它們的位似比為1:2的△A3B3C3,畫出放大后的圖形.如果△ABC中任意一點M的坐標(biāo)為(x,y),那么它的對應(yīng)點M3的坐標(biāo)是
 

(4)△ABC與△A2B2C2關(guān)于點P成中心對稱,在圖中標(biāo)注點P,則點P的坐標(biāo)是
 

精英家教網(wǎng)
分析:(1)根據(jù)圖形的平移距離得出△ABC平移后的圖形即可,圖形平移距離既是對應(yīng)點平移距離;
(2)根據(jù)點的坐標(biāo)特點即可得出兩三角形對應(yīng)點的坐標(biāo)互為相反數(shù);
(3)根據(jù)圖象可知兩三角形對應(yīng)點的坐標(biāo)互為相反數(shù)得出答案即可;
(4)連接△ABC與△A2B2C2的對應(yīng)點即可得出P點的坐標(biāo).
解答:解:根據(jù)圖象可分別得出答案;
精英家教網(wǎng)
(1)(5,3),2
5
;
(2)(-5,-3),(-x,-y);
(3)(-x,-y);
(4)(-1,-2).
點評:此題主要考查了圖形的位似變換以及平移和旋轉(zhuǎn),正確地進(jìn)行圖形的變換找出對應(yīng)點是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點C的坐標(biāo)為(2,-1).
(1)把△ABC先向上平移4個單位得△A1B1C1,再沿x軸翻折得△A2B2C2,請在網(wǎng)格中畫出△A2B2C2,并寫出C2的坐標(biāo).
(2)以原點為位似中心,在第二象限內(nèi)畫出△ABC的位似圖形△A3B3C3,且△A3B3C3與△ABC的相似比為2,并寫出C3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連續(xù)為邊的三角形稱為“格點三角形”,圖中的△ABC是格點三角形,在建立平面直角坐標(biāo)系后,點B的坐標(biāo)為(-1,-1)把△ABC繞點C按順時針方向旋轉(zhuǎn)90°后得到△A1B1C,畫出△A1B1C的圖形,并寫出點B1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點B的坐標(biāo)為(-1,0)
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2
(3)△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,寫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中的每個小正方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC的頂點均在格點上,O、M都在格點上.
(1)畫出△ABC關(guān)于直線OM對稱的△A1B1C1;
(2)畫出將△ABC繞點O按順時針方向旋轉(zhuǎn)90°后得到的△A2B2C2
(3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形碼?如果是軸對稱圖形,請畫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中的每個小方格都是邊長為1的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,A(-1,5),B(-1,0),C(-4,3).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;(其中A1、B1、C1是A、B、C的對應(yīng)點,不寫畫法)
(2)寫出A1、B1、C1的坐標(biāo);
(3)求出△A1B1C1的面積.

查看答案和解析>>

同步練習(xí)冊答案