【題目】如圖,矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;
(1)求證:AM=FM;
(2)若∠AMD=a.求證:=cosα.
【答案】(1)見解析;(2)見解析.
【解析】
(1)由旋轉(zhuǎn)性質(zhì)可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,則HF=FG=AD,所以可證△ADM≌△MHF,結(jié)論可得.
(2)作FN⊥DG垂足為N,且MF=FG,可得HN=GN,且DM=MH,可證2MN=DG,由第一問可得2MF=AF,由cosα=cos∠FMG=,代入可證結(jié)論成立
(1)由旋轉(zhuǎn)性質(zhì)可知:
CD=CG且∠DCG=90°,
∴∠DGC=45°從而∠DGF=45°,
∵∠EFG=90°,
∴HF=FG=AD
又由旋轉(zhuǎn)可知,AD∥EF,
∴∠DAM=∠HFM,
又∵∠DMA=∠HMF,
∴△ADM≌△FHM
∴AM=FM
(2)作FN⊥DG垂足為N
∵△ADM≌△MFH
∴DM=MH,AM=MF=AF
∵FH=FG,F(xiàn)N⊥HG
∴HN=NG
∵DG=DM+HM+HN+NG=2(MH+HN)
∴MN=DG
∵cos∠FMG=
∴cos∠AMD=
∴=cosα
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】京張高鐵是世界上首條智能化高速鐵路,起點(diǎn)是北京北,終點(diǎn)是張家口南.建成后的京張高鐵鐵路運(yùn)行里程由原來的196km縮短為174km,運(yùn)行時(shí)間縮短為原來的,平均速度比原來快150千米/小時(shí).求建成后的京張高鐵從北京北至張家口南的運(yùn)行時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,為的中點(diǎn),過點(diǎn)作,交于點(diǎn),交于點(diǎn).若,則的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為的等邊三角形的頂點(diǎn)分別在邊,上當(dāng)在邊上運(yùn)動(dòng)時(shí),隨之在邊上運(yùn)動(dòng),等邊三角形的形狀保持不變,運(yùn)動(dòng)過程中,點(diǎn)到點(diǎn)的最大距離為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各變量之間是反比例關(guān)系的是( )
A. 存入銀行的利息和本金 B. 在耕地面積一定的情況下,人均占有耕地面積與人口數(shù)
C. 汽車行駛的時(shí)間與速度 D. 電線的長(zhǎng)度與其質(zhì)量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣2,0),點(diǎn)B(0,2).
(1)直接寫求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點(diǎn)O順時(shí)針得△A′OB′,當(dāng)A′恰好落在AB邊上時(shí),設(shè)△AB′O的面積為S1,△BA′O的面積為S2,S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)
根據(jù)所給信息,解答以下問題:
(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是_____度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在_____等級(jí);
(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)(k,b都是常數(shù),且),的圖象經(jīng)過點(diǎn)(1,0)和(0,3).
(1)求此函數(shù)的表達(dá)式.
(2)已知點(diǎn)在該函數(shù)的圖象上,且.
①求點(diǎn)P的坐標(biāo).
②若函數(shù)(a是常數(shù),且)的圖象與函數(shù)的圖象相交于點(diǎn)P,寫出不等式的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com