【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點、點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.
【答案】(1),y=x+3;(2)S△AOB=; (3)x>1 ,12, -4 <a<0
【解析】
(1)把A的坐標(biāo)代入反比例函數(shù)解析式求出A的坐標(biāo),把A的坐標(biāo)代入一次函數(shù)解析式求出即可;
(2)求出直線AB與y軸的交點C的坐標(biāo),分別求出△ACO和△BOC的面積,然后相加即可;
(3)根據(jù)A、B的坐標(biāo)結(jié)合圖象即可得出答案.
(1)把A點(1,4)分別代入反比例函數(shù)解析式,一次函數(shù)解析式
y=kx+b,得,k=1×4,1+b=4,解得,k=4,b=3,
所以反比例函數(shù)解析式是,一次函數(shù)解析式y=x+3,
(2)如圖
當(dāng)X=-4時,y=-1,
∴B(-4,-1),
當(dāng)y=0時,x+3=0,x=-3,
∴C(-3,0),
∴S△AOB= S△AOC+ S△BOC=
故答案為:
(3)∵B(-4,-1),A(1,4),
∴根據(jù)圖象可知:當(dāng)x>1或-4<x<0時,一次函數(shù)值大于反比例函數(shù)值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB 是⊙O 的直徑,點 C 在⊙O 上,∠BAC=46°,點 P 在線段 OB上運動.設(shè)∠APC=x°,則 x的取值范圍為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長為的等邊三角形,動點、同時從、兩點出發(fā),分別沿、方向勻速移動,它們的速度都是,當(dāng)點到達點時,、兩點停止運動,設(shè)點的運動時間.
解答下列各問題:
(1)求的面積
(2)當(dāng)為何值時,是直角三角形?
(3)設(shè)四邊形的面積為,求與的關(guān)系式;是否存在某一時刻,使四邊形的面積是面積的三分之二?如果存在,求出的值;不存在請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究活動一:
如圖1,某數(shù)學(xué)興趣小組在研究直線上點的坐標(biāo)規(guī)律時,在直線AB上的三點A(1,3)、B(2,5)、C(4,9),有kAB==2,kAC==2,發(fā)現(xiàn)kAB=kAC,興趣小組提出猜想:若直線y=kx+b(k≠0)上任意兩點坐標(biāo)P(x1,y1),Q(x2,y2)(x1≠x2),則kPQ=是定值.通過多次驗證和查閱資料得知,猜想成立,kPQ是定值,并且是直線y=kx+b(k≠0)中的k,叫做這條直線的斜率.
請你應(yīng)用以上規(guī)律直接寫出過S(﹣2,﹣2)、T(4,2)兩點的直線ST的斜率kST= .
探究活動二
數(shù)學(xué)興趣小組繼續(xù)深入研究直線的“斜率”問題,得到正確結(jié)論:任意兩條不和坐標(biāo)軸平行的直線互相要直時,這兩條直線的斜率之積是定值.
如圖2,直線DE與直線DF垂直于點D,D(2,2),E(1,4),F(4,3).請求出直線DE與直線DF的斜率之積.
綜合應(yīng)用
如圖3,⊙M為以點M為圓心,MN的長為半徑的圓,M(1,2),N(4,5),請結(jié)合探究活動二的結(jié)論,求出過點N的⊙M的切線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“互聯(lián)網(wǎng)+”時代,網(wǎng)上購物備受消費者青睞.某網(wǎng)店專售一款休閑褲,其成本為每條40元,當(dāng)售價為每條80元時,每月可銷售100條.為了吸引更多顧客,該網(wǎng)店采取降價措施.據(jù)市場調(diào)查反映:銷售單價每降1元,則每月可多銷售5條.設(shè)每條褲子的售價為元(為正整數(shù)),每月的銷售量為條.
(1)直接寫出與的函數(shù)關(guān)系式;
(2)設(shè)該網(wǎng)店每月獲得的利潤為元,當(dāng)銷售單價降低多少元時,每月獲得的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤中捐出200元資助貧困學(xué)生.為了保證捐款后每月利潤不低于4220元,且讓消費者得到最大的實惠,該如何確定休閑褲的銷售單價?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行鋼筆書法大賽,對各年級同學(xué)的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.
請結(jié)合圖中相關(guān)信息解答下列問題:
(1)扇形統(tǒng)計圖中三等獎所在扇形的圓心角的度數(shù)是______度;
(2)請將條形統(tǒng)計圖補全;
(3)獲得一等獎的同學(xué)中有來自七年級,有來自九年級,其他同學(xué)均來自八年級.現(xiàn)準(zhǔn)備從獲得一等獎的同學(xué)中任選2人參加市級鋼筆書法大賽,請通過列表或畫樹狀圖的方法求所選出的2人中既有八年級同學(xué)又有九年級同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,添加下列一個條件,不能使△ADE∽△ACB的是( ).
A. DE∥BCB. ∠AED=∠BC. =D. ∠ADE=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是()
A.方程是關(guān)于x的一元二次方程
B.不是二次根式
C.一元二次方程有兩個不相等的實數(shù)根
D.一元二次方程只有一個根x=3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com