【題目】如圖某水平地面上建筑物的高度為AB,在點D和點F處分別豎立高是2米的標(biāo)桿CDEF,兩標(biāo)桿相隔52,并且建筑物AB標(biāo)桿CDEF在同一豎直平面內(nèi),從標(biāo)桿CD后退2米到點GG處測得建筑物頂端A和標(biāo)桿頂端C在同一條直線上;從標(biāo)桿FE后退4米到點HH處測得建筑物頂端A和標(biāo)桿頂端E在同一條直線上求建筑物的高

【答案】54

【解析】試題分析:首先由ABCDEF可得出CDGABG,EFHABH,再根據(jù)相似三角形的對應(yīng)邊成比例列出比例式求解即可

試題解析:解:ABBH,CDBH,EFBH,,∴ABCDEF,∴CDGABG,EFHABH,∴,,∵CD=DG=EF=2m,DF=52mFH=4m,∴,,∴,解得BD=52,∴,解得AB=54.

答:建筑物的高為54

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個矩形場地.

(1)怎樣圍才能使矩形場地的面積為750m2?

(2)能否使所圍矩形場地的面積為810m2 ,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并解決問題:任意一個大于1的正整數(shù)m都可以表示為:m=p2+q(p、q是正整數(shù),在m的所有這種表示中,如果最小時,規(guī)定:F(m)=.例如:21可以表示為:21=12+20=22+17=32+12=42+5,因為>>>,所以F(21)=

(1)F(33)的值;

(2)如果一個正整數(shù)n可以表示為t2-t(其中t≥2,且是正整數(shù)),那么稱n是次完全平方數(shù),證明:任何一個次完全平方數(shù)n,都有F(n)=1;

(3)一個三位自然數(shù)k,k=100a+10b+c(其中1≤a≤9,0≤b≤9,0≤c≤9,且a≤c,a、b、c為整數(shù)),滿足十位上的數(shù)字恰好等于百位上的數(shù)字與個位上的數(shù)字之和,且k與其十位上數(shù)字的2倍之和能被9整除,求所有滿足條件的kF(k)的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮分別從同一直線跑道A、B兩端同時相向勻速出發(fā),小明和小亮第一次相遇后,小明覺得自己速度太慢便提速至原速的倍,并勻速運動達到B端,且小明到達B端后停止運動,小亮勻速跑步到達A端后,立即按原速返回B端(忽略調(diào)頭時間),回到B端后停止運動,已知兩人相距的路程S(千米)與小亮出發(fā)時間t(秒)之間的關(guān)系如圖所示,則當(dāng)小明到達B端后,經(jīng)過_____秒,小亮回到B端.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點.

(1)求拋物線的解析式和頂點坐標(biāo);

(2)P為拋物線上一點,若SPAB=10,求出此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)與一次函數(shù)交于頂點和點兩點,一次函數(shù)與軸交于點.

(1)求二次函數(shù)和一次函數(shù)的解析式;

(2)軸上存在點使的面積為9,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當(dāng)?shù)慕祪r措施,以擴大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.

(1)設(shè)每件童裝降價x元時,每天可銷售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)

(2)每件童裝降價多少元時,平均每天贏利1200元.

(3)要想平均每天贏利2000元,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BCAC,點E在BC上,CE=CA,點D在AB上,連接DE,ACB+ADE=180°,作CHAB,垂足為H.

(1)如圖a,當(dāng)ACB=90°時,連接CD,過點C作CFCD交BA的延長線于點F.

①求證:FA=DE;

②請猜想三條線段DE,AD,CH之間的數(shù)量關(guān)系,直接寫出結(jié)論;

(2)如圖b,當(dāng)ACB=120°時,三條線段DE,AD,CH之間存在怎樣的數(shù)量關(guān)系?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,弦CD⊥AB于點E,過點C的切線交AB的延長線于點F,連接DF.

(1)求證:DF⊙O的切線;

(2)連接BC,若∠BCF=30°,BF=2,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案