11.已知在Rt△ABC中,∠C=90°.若sinA=$\frac{1}{2}$,則cosA等于( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.1

分析 把sinA=$\frac{1}{2}$代入sin2A+cos2A=1,即可求出答案.

解答 解:∵sin2A+cos2A=1,sinA=$\frac{1}{2}$,
∴$\frac{1}{4}$+cos2A=1,
∵∠A為銳角,
∴cosA=$\frac{\sqrt{3}}{2}$.
故選A.

點(diǎn)評(píng) 本題考查了同角三角函數(shù)的關(guān)系的應(yīng)用,能理解等式sin2A+cos2A=1是解此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖1,將拋物線y=$\frac{1}{4}{x^2}$的頂點(diǎn)C向右平移m個(gè)單位,交y軸于點(diǎn)B,且tan∠BCO=$\frac{1}{2}$.
(1)求此拋物線的解析式;
(2)圖2,當(dāng)⊙A的圓心A在拋物線上運(yùn)動(dòng)時(shí),動(dòng)圓A始終經(jīng)過(guò)點(diǎn)B,MN為⊙A在x軸上截得的弦(點(diǎn)M在N左側(cè)),設(shè)MN2=y,A點(diǎn)的橫坐標(biāo)為x(x>0),試求y與x之間的函數(shù)關(guān)系式;(不要求寫出自變量的取值范圍)
(3)在(2)的條件下,拋物線的對(duì)稱軸上是否存在一點(diǎn)Q,使得以A、B、Q為頂點(diǎn)的三角形為等腰直角三角形,并直接寫出點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在△ABC中,∠ACB=90°,AC=BC,BE是中線,CG平分∠ACB交BE于點(diǎn)G,F(xiàn)為AB邊上一點(diǎn),且∠ACF=∠CBG.
(1)求證:CF=BG;
(2)延長(zhǎng)CG交AB于點(diǎn)H,判斷點(diǎn)G是否在線段AB的垂直平分線上?并說(shuō)明理由.
(3)過(guò)點(diǎn)A作AD⊥AB交BE的延長(zhǎng)線于點(diǎn)D,請(qǐng)證明:CF=2DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)0<k<3,關(guān)于x的一次函數(shù)y=kx+3(1-x),當(dāng)1≤x≤2時(shí)的最大值是( 。
A.2k-3B.k+1C.kD.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,△ABC,△DCE都為等腰直角三角形,B、C、E三點(diǎn)在同一直線上,BF∥DE,DF交BE于G,且G為BE的中點(diǎn):
(1)若AB=2,CE=$\sqrt{2}$,求△ACD的面積;
(2)求證:DG=FG;
(3)探索AG與FD的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.臺(tái)灣是我國(guó)最大的島嶼,總面積約為360000千米2,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示應(yīng)為3.6×105千米2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求值:已知32m=6,9n=8,求36m-4n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.先化簡(jiǎn),再求值:4(x2+$\frac{1}{2}$x)-(2x2-3x),其中x=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,某校數(shù)學(xué)興趣小組為測(cè)量學(xué)校旗桿AC的高度,在點(diǎn)F處豎立一根長(zhǎng)為1.5米的標(biāo)桿DF,如圖所示,量出DF的影子EF的長(zhǎng)度為1米,再量出旗桿AC的影子BC的長(zhǎng)度為6米,那么旗桿AC的高度為9米.

查看答案和解析>>

同步練習(xí)冊(cè)答案