【題目】如圖,在正方形ABCD中,將正方形的邊AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,連接BE、DE,過點(diǎn)A作AF⊥BE于F,交直線DE于P.
(1)如圖①,若∠DAE=40°,求∠P的度數(shù);
(2)如圖②,若90°<∠DAE<180°,其它條件不變,試探究線段AP、DP、EP之間的數(shù)量關(guān)系,并說明理由;
(3)繼續(xù)旋轉(zhuǎn)線段AD,若旋轉(zhuǎn)角180°<∠DAE<270°,則線段AP、DP、EP之間的數(shù)量關(guān)系為(直接寫出結(jié)果)
【答案】
(1)
解:∵四邊形ABCD是正方形,
∴AD=AB,∠BAD=90°,
∵AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,
∴AD=AE,
∵∠DAE=40°,
∴∠ADE=∠AED=70°,∠BAE=50°,
∵AF⊥BE,
∴∠FAE=∠FAB=25°,
∴∠P=∠AED﹣∠PAE=45°;
(2)
解:如圖2,過A作AQ⊥DE于Q,
則∠PAQ=∠BAQ+∠FAB,
∵AE=AB,AF⊥BE,
∴∠FAE=∠BAF,
∴∠APQ=∠EAF+∠AEP,
∵∠BAD=∠AQP=90°,
∴∠BAQ=∠ADQ,
∵AE=AD,
∴∠ADQ=∠AEP,
∴∠BAQ=∠AEP,
∴∠APQ=∠PAQ=45°,
∴PQ= AP,
∴PE+PQ=PD﹣PQ,
即PE+ AP=PD﹣ AP,
∴PD= AP+PE;
(3)PE=PD+ PA
【解析】解:(3)如圖3,過A作AQ⊥DE于Q,則∠AQP=90°,
∵AD=AE,
∴DQ=EQ,∠AEQ=∠ADQ,
∵AE=AB,AF⊥BE,
∴∠3=∠FAB,
∵∠APQ=∠3﹣∠AEQ=∠3﹣∠ADQ,
∵∠1+∠FAB=∠FAB+∠ABF=90°,
∴∠1=∠ABF=∠AEF,
∴∠2=90°﹣∠1﹣∠ADP=90°﹣(90°﹣∠3)﹣∠AEP=∠3﹣∠AEP,
∴∠2=∠APQ=45°,
∴PQ= AP,
∴PD+PQ=PE﹣PQ,
即PD+ PA=PE﹣ PA,
∴PE=PD+ PA.
所以答案是:PE=PD+ PA.
【考點(diǎn)精析】通過靈活運(yùn)用等腰三角形的性質(zhì),掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( )
A. 15 B. 12.5 C. 14.5 D. 17
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC與點(diǎn)O在10×10的網(wǎng)格中的位置如圖所示
(1)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的圖形;
(2)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°后的圖形;
(3)若⊙M能蓋住△ABC,則⊙M的半徑最小值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣4x+1﹣p2=0.
(1)若p=2,求原方程的根;
(2)求證:無論p為何值,方程總有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D為邊AB的中點(diǎn),DE∥BC,將△ABC沿線段DE折疊,使點(diǎn)A落在點(diǎn)F處,若∠B=50°,則∠EDF=_______,∠BDF=_______,若AB=10cm,則FD= ________cm。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個(gè)房間可供游客居住,當(dāng)每個(gè)房間每天的定價(jià)為180元時(shí),房間會(huì)全部住滿,當(dāng)每個(gè)房間每天的定價(jià)增加10元時(shí),就會(huì)有一個(gè)房間空閑,如果游客居住房間,賓館需對(duì)每個(gè)房間每天支出20元的各種費(fèi)用,設(shè)每個(gè)房間的定價(jià)增加x元(x為10的整數(shù)倍),此時(shí)入住的房間數(shù)為y間,賓館每天的利潤(rùn)為w元.
(1)直接寫出y(間)與x(元)之間的函數(shù)關(guān)系;
(2)如何定價(jià)才能使賓館每天的利潤(rùn)w(元)最大?
(3)若賓館每天的利潤(rùn)為10800元,則每個(gè)房間每天的定價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)= ; (2)= ; (3) ;
(4) ; (5) ; (6)a3·a3= ;
(7) (x3)5= ; (8)(-2x2y3)3= ; (9) (x-y)6÷(x-y)3= ;
(10)a2b(ab-4b2) (11)(2a-3b)(2a+5b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE,CE,求四邊形BOCE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
(3)點(diǎn)P在拋物線的對(duì)稱軸上,若線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好也落在此拋物線上,求點(diǎn)P的坐標(biāo).
(4)連接AC,H是拋物線上一動(dòng)點(diǎn),過點(diǎn)H作AC的平行線交x軸于點(diǎn)F.是否存在這樣的點(diǎn)F,使得以A,C,H,F(xiàn)為頂點(diǎn)所組成的四邊形是平行四邊形?若存在,求出滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y= 的圖象上.若點(diǎn)B在反比例函數(shù)y= 的圖象上,則k的值為( )
A.﹣4
B.4
C.﹣2
D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com