【題目】如圖,O是坐標原點,菱形OABC的頂點A的坐標為,頂點C在x軸的正半軸上,則的角平分線所在直線的函數(shù)關(guān)系式為______.
【答案】
【解析】
延長BA交y軸于D,則BD⊥y軸,依據(jù)點A的坐標為(3,4),即可得出B(8,4),再根據(jù)∠AOC的角平分線所在直線經(jīng)過點B,即可得到函數(shù)關(guān)系式.
如圖所示,延長BA交y軸于D,則BD⊥y軸.
∵點A的坐標為(3,4),∴AD=3,OD=4,∴AO=AB=5,∴BD=3+5=8,∴B(8,4).
設(shè)∠AOC的角平分線所在直線的函數(shù)關(guān)系式為y=kx.
∵菱形OABC中,∠AOC的角平分線所在直線經(jīng)過點B,∴4=8k,即k,∴∠AOC的角平分線所在直線的函數(shù)關(guān)系式為yx.
故答案為:yx.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】背景情境:
賽賽同學(xué)在學(xué)習(xí)《一元二次方程》中做過這樣一道題:
題目:已知實數(shù)、滿足,,且,求的值.
解:根據(jù)題意得
與為方程的兩根,
∴,
∴
請認真閱讀賽賽同學(xué)解題的方法,仔細思考.
解決問題:
(1)已知實數(shù)、滿足,,且,求的值.
(2)設(shè)實數(shù)、分別滿足,,且,求的值.
(3)已知關(guān)于的方程有兩個根、滿足.當的三邊、、滿足,,(a≠b).求的值以及的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組成員張廣益對本年級期中考試數(shù)學(xué)成績(成績?nèi)≌麛?shù),滿分為100分)做了統(tǒng)計分析,繪制成如下頻數(shù)、頻率分布表和頻數(shù)分布直方圖.請你根據(jù)圖表提供的信息,解答下列問題:
⑴填充頻率分布表中的空格:a ,b ,c ;
⑵補全頻率分布直方圖;
⑶已知本年級共計1700名學(xué)生,若競賽成績在90分以上(不含90分)為優(yōu)秀,估算本年級數(shù)學(xué)成績優(yōu)秀的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E是BC邊的中點,連接DE并延長交AB的延長線于點F,則在題中條件下,下列結(jié)論不能成立的是( )
A. BE=CE B. AB=BF C. DE=BE D. AB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)圖像經(jīng)過和兩點
(1)求這個函數(shù)解析式;
(2)過點B作直線與軸交于點,若三角形的面積為10,試求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點O在AC上,以OA為半徑的⊙O交AB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,AB=AC,點D、點O分別為BC、AC的中點,AE//BC.
(1)如圖1,求證:四邊形ADCE是矩形;
(2)如圖2,若點 F是 CE上一動點,在不添加任何輔助線的情況下,請直接寫出與四邊形 ABDF 面積相等的三角形和四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com