【題目】△ABC與△ADE都是等腰直角三角形,且AC=AB,AD=AE,連接DC,點M、P、N分別為DE、DC、BC的中點.
(1)如圖1,當點D、E分別在邊AB、AC上,線段PM與PN的數(shù)量關系是 ,位置關系是 ;
(2)把等腰Rt△ADE繞點A旋轉到如圖2的位置,連接MN,判斷△PMN的形狀,并說明理由;
(3)把等腰Rt△ADE繞點A在平面內(nèi)任意旋轉,AD=2,AB=6,請直接寫出△PMN的面積S的變化范圍 .
【答案】(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,見解析;(3)2≤S≤8
【解析】
(1)利用三角形的中位線得出PM=CE,PN=BD,進而判斷出BD=CE,即可得出結論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結論;
(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結論;
(3)先判斷出BD最大時,△PMN的面積最大,而BD最大是AB+AD=14,再判斷出B
最小時,△PMN最小,即可得出結論.
解:(1)∵點P,N是BC,CD的中點,
∴PN∥BD,PN=BD,
∵點P,M是CD,DE的中點,
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∵PN∥BD,
∴∠DPN=∠ADC,
∵PM∥CE,
∴∠DPM=∠DCA,
∵∠BAC=90°,
∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
∴PM⊥PN,
故答案為:PM=PN,PM⊥PN;
(2)△PMN是等腰直角三角形.
由旋轉知,∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,BD=CE,
利用三角形的中位線得,PN=BD,PM=CE,
∴PM=PN,
∴△PMN是等腰三角形,
同(1)的方法得,PM∥CE,
∴∠DPM=∠DCE,
同(1)的方法得,PN∥BD,
∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,
∴∠ACB+∠ABC=90°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形;
(3)由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
∴PM最大時,△PMN面積最大,PM最小時,△PMN面積最小
∴點D在BA的延長線上,△PMN的面積最大,
∴BD=AB+AD=8,
∴PM=4
∴S最大=PM2=×42=8,
當點D在線段AB上時,△PMN的面積最小,
∴BD=AB﹣AD=4,
∴PM=2,
S最小=PM2=×22=2,
∴2≤S≤8,
故答案為:2≤S≤8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=mx2﹣4mx+2m+1與x軸交于A(x1,0),B(x2,0)兩點,與y軸交于點C,且x2﹣x1=2.
(1)求拋物線的解析式;
(2)E是拋物線上一點,∠EAB=2∠OCA,求點E的坐標;
(3)設拋物線的頂點為D,動點P從點B出發(fā),沿拋物線向上運動,連接PD,過點P做PQ⊥PD,交拋物線的對稱軸于點Q,以QD為對角線作矩形PQMD,當點P運動至點(5,t)時,求線段DM掃過的圖形面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,交y軸正半軸于C點,D為拋物線的頂點,A(-1,0),B(3,0).
(1)求出二次函數(shù)的表達式.
(2)點P在x軸上,且∠PCB=∠CBD,求點P的坐標.
(3)在x軸上方拋物線上是否存在一點Q,使得以Q,C,B,O為頂點的四邊形被對角線分成面積相等的兩部分?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,延長AD至點E,使DE=AD,連接BD.
(1)求證:四邊形BCED是平行四邊形;
(2)若DA=DB=2,cosA=,求點B到點E的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的部分圖象如圖所示,直線x=1為對稱軸,以下結論①a<0,②b>0,③2a+b=0,④3a+c<0正確的有(填序號)_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,當m,n滿足mn=k(k為常數(shù),且m>0,n>0)時,就稱點(m,n)為“等積點”.若直線y=﹣x+b(b>0)與x軸、y軸分別交于點A和點B,并且該直線上有且只有一個“等積點”,過點A與y軸平行的直線和過點B與x軸平行的直線交于點C,點E是直線AC上的“等積點”,點F是直線BC上的“等積點”,若△OEF的面積為,則OE=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,G是⊙O上兩點,且,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.
(1)求證:CD是⊙O的切線;
(2)若,求證:AE=AO;
(3)連接 AD,在(2)的條件下,若CD ,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家的門框上裝有一把防盜門鎖(如圖1),其平面結構圖如圖2所示,鎖身可以看成由兩條等弧,和矩形組成的,的圓心是倒鎖按鈕點.已知的弓形高,,.當鎖柄繞著點順時針旋轉至位置時,門鎖打開,此時直線與所在的圓相切,且,.
(1)求所在圓的半徑;
(2)求線段的長度.(,結果精確到)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)求該二次函數(shù)圖象的頂點和對稱軸;
(2)在所給坐標系中畫出該二次函數(shù)的圖象;
(3)根據(jù)圖象直接寫出方程x2﹣4x+3=0的根;
(4)根據(jù)圖象寫出當y<0時,x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com