問題背景:

如圖1,矩形鐵片ABCD的長為2a,寬為a; 為了要讓鐵片能穿過直徑為的圓孔,需對鐵片進行處理(規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔);

探究發(fā)現(xiàn):

1.如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點,若將矩形鐵片的四個角去掉,只余下四邊形MNPQ,則此時鐵片的形狀是 _______,給出證明,并通過計算說明此時鐵片都能穿過圓孔;

拓展遷移:

2.如圖3,過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點E、F(不與端點重合),沿著這條直線將矩形  鐵片切割成兩個全等的直角梯形鐵片;

 

①當(dāng)BE=DF=時,判斷直角梯形鐵片EBAF能否穿過圓孔,并說明理由;

②為了能使直角梯形鐵片EBAF順利穿過圓孔,請直接寫出線段BE的長度的取值范圍 .

 

【答案】

 

1.是菱形

如圖,過點M作MG⊥NP于點G,∵M、N、P、Q分別是AD、AB、BC、

CD的中點,∴△AMN≌△BPN≌△CPQ≌△DMQ,∴MN=NP=PQ=QM,

∴四邊形MNPQ是菱形,,MN=,∴MG=,∴此時鐵片能穿過圓。

                  

2.①如圖,過點A作AH⊥EF于點H,過點E作EK⊥AD于點K

顯然AB=, 故沿著與AB垂直的方向無法穿過圓孔

過點A作EF的平行線RS,故只需計算直線RS與EF之間的距離即可

∵BE=AK=,EK=AB=a,AF=

∴KF=,EF=,∵∠AHF=∠EKF=90°,∠AFH=∠EFK

∴△AHF∽△EKF     ∴,可得AH=

∴該直角梯形鐵片不能穿過圓孔

.

【解析】

1.利用四條邊相等的四邊形為矩形來判定四邊形為菱形,然后利用面積相等來求得菱形一邊的高,與已知數(shù)據(jù)比較后判斷是否能通過.

2.利用兩三角形相似得到比例線段,進而求出點A到EF的距離,然后與已知線段比較,從而判定能否通過.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:如圖,點C是半圓O上一動點(點C與A、B不重合),AB=2,連接AC、BC、OC,將△AOC沿直線AC翻折得△ADC,點、E、F、G、H分別是DA、AO、OC、CD的中點.
(1)猜想證明:猜想四邊形AOCD以及四邊形EFGH的形狀,并證明你的結(jié)論;
(2)拓展探究:探究點C在半圓弧上哪個位置時,四邊形EFGH面積最大?求出這個最大精英家教網(wǎng)值,判斷此時四邊形EFGH的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•臨川區(qū)模擬)問題背景:如圖1,四邊形ABCD和CEFG都是正方形,B,C,E在同一條直線上,連接BG,DE.
問題探究:
(1)①如圖1所示,當(dāng)G在CD邊上時,猜想線段BG、DE的數(shù)量關(guān)系及所在直線的位置關(guān)系.(不要求證明)
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,請選擇圖2或圖3證明你的判斷.
類比研究:
(2)若將原題中的“正方形”改為“矩形”(如圖4所示),且
AB
BC
=
CE
CG
=k(其中k>0),請直接寫出線段BG、DE的數(shù)量關(guān)系及位置關(guān)系.請選擇圖5或圖6證明你的判斷.
拓展應(yīng)用:
(3)在(1)中圖2中,連接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•日照)問題背景:
如圖(a),點A、B在直線l的同側(cè),要在直線l上找一點C,使AC與BC的距離之和最小,我們可以作出點B關(guān)于l的對稱點B′,連接A B′與直線l交于點C,則點C即為所求.

(1)實踐運用:
如圖(b),已知,⊙O的直徑CD為4,點A 在⊙O 上,∠ACD=30°,B 為弧AD 的中點,P為直徑CD上一動點,則BP+AP的最小值為
2
2
2
2

(2)知識拓展:
如圖(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分線交BC于點D,E、F分別是線段AD和AB上的動點,求BE+EF的最小值,并寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

問題背景:如圖1,四邊形ABCD和CEFG都是正方形,B,C,E在同一條直線上,連接BG,DE.
問題探究:
(1)①如圖1所示,當(dāng)G在CD邊上時,猜想線段BG、DE的數(shù)量關(guān)系及所在直線的位置關(guān)系.(不要求證明)
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,請選擇圖2或圖3證明你的判斷.
類比研究:
(2)若將原題中的“正方形”改為“矩形”(如圖所示),且數(shù)學(xué)公式=k(其中k>0),請直接寫出線段BG、DE的數(shù)量關(guān)系及位置關(guān)系.請選擇圖5或圖6證明你的判斷.
拓展應(yīng)用:
(3)在(1)中圖2中,連接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:臨川區(qū)模擬 題型:解答題

問題背景:如圖1,四邊形ABCD和CEFG都是正方形,B,C,E在同一條直線上,連接BG,DE.
問題探究:
(1)①如圖1所示,當(dāng)G在CD邊上時,猜想線段BG、DE的數(shù)量關(guān)系及所在直線的位置關(guān)系.(不要求證明)
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,請選擇圖2或圖3證明你的判斷.
類比研究:
(2)若將原題中的“正方形”改為“矩形”(如圖所示),且
AB
BC
=
CE
CG
=k(其中k>0),請直接寫出線段BG、DE的數(shù)量關(guān)系及位置關(guān)系.請選擇圖5或圖6證明你的判斷.
拓展應(yīng)用:
(3)在(1)中圖2中,連接DG、BE,若AB=3,EF=2,求BE2+DG2的值.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案