【題目】如圖,點C、E分別為△ABD的邊BD、AB上兩點,且AE=AD,CE=CD,D=70゜,ECD=150゜,求∠B的度數(shù).

【答案】見解析

【解析】

試題連結AC,證△ACE≌△ACD(SSS),∠AEC=∠D="70°," ∠BEC="110°," ∠ECB=180-150=30°

所以∠B=180-110-30=40.

試題解析:解:連接AC

因為,在△ACE△ACD中,AE =" AD" ,CE =" CD" ,AC為公共邊,

所以,△ACE ≌ △ACD ,

可得:∠AEC = ∠ADC =" 70°" ,

所以,∠B = ∠AEC-∠BCE = ∠AEC-(180°-∠ECD)

= 70°-(180°-150°)

= 40°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有一應用題:“李老師存了一個兩年的定期儲蓄5000元,到期后扣除20%的利息稅能取5176元,求這種儲蓄的年利率是多少?”四位同學都是設這種儲蓄的年利率是x,可他們列出的方程卻不同,下列列出的方程中正確的是(

A. 5000(1+x×2×20%)=5176 B. 5000(1+2x)×80%=5176

C. 5000+5000x×2×80%=5176 D. 5000+5000x×80%=5176

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+1分別與x軸、y軸相交于點A、B,以點A為圓心、AB長為半徑畫弧交x軸于點A1,再過點A1x軸的垂線交直線于點B1,以點A為圓心、AB1長為半徑畫弧交x軸于點A2……按此做法進行下去,則點A8的坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑為AB,點C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,已知點D在線段AB的反向延長線上,AC的中點F作線段GEDAC的平分線于EBCG,AEBC

(1)求證ABC是等腰三角形

(2)AE=8,AB=10,GC=2BGABC的周長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡求值與計算
(1)先化簡,再求值:(1+ )÷ ,其中x= 1
(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣3x+m﹣3=0,若此方程的兩根的倒數(shù)和為1,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家超市以相同的價格出售同樣的商品,但為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計購買商品超過400元后,超過部分按原價七折優(yōu)惠;在乙超市購買商品只按原價的八折優(yōu)惠;設顧客累計購物元(

(1)用含的代數(shù)式分別表示顧客在兩家超市購買所付的費用。

(2)當時,試比較顧客到哪家超市購物更加優(yōu)惠。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某音樂廳五月初決定在暑假期間舉辦學生專場音樂會,入場券分為團體票和零售票,其中團體票占總數(shù)的,若提前購票,則給予不同程序的優(yōu)惠:若在五月份內,團體票每張12元,共售出團體票數(shù)的;零售票每張16元,共售出零售票數(shù)的一半;如果在六月份內,團體票按每張16元出售,并計劃在六月份售出全部余票,設六月份零售票按每張x元定價,總票數(shù)為a張.

(1)五月份的票價總收入為_____元;六月份的總收入為______元;

(2)x為多少時,才能使這兩個月的票款收入持平?

查看答案和解析>>

同步練習冊答案