(2002•南京)如圖,客輪沿折線A─B─C從A出發(fā)經(jīng)B再到C勻速航行,貨輪從AC的中點(diǎn)D出發(fā)沿某一方向勻速直線航行,將一批物品送達(dá)客輪,兩船同時(shí)起航,并同時(shí)到達(dá)折線A─B─C上的某點(diǎn)E處,已知AB=BC=200海里,∠ABC=90°,客輪速度是貨輪速度的2倍.
(1)選擇:兩船相遇之處E點(diǎn)( )
A、在線段AB上;B、在線段BC上;C、可以在線段AB上,也可以在線段BC上.
(2)求貨輪從出發(fā)到兩船相遇共航行了多少海里?

【答案】分析:(1)連接BD,則△ABD是等腰直角三角形,假設(shè)E為AB的中點(diǎn),有AB=2DE,此時(shí)DE最短;假設(shè)E點(diǎn)在線段AB上,但不在中點(diǎn),根據(jù)已知客輪速度是貨輪速度的2倍可得AE=2DE,由假設(shè)E為AB的中點(diǎn),有AB=2DE得出AE>AB,很明顯假設(shè)不成立.故E點(diǎn)不在AB上,應(yīng)該在線段BC上;
(2)設(shè)貨輪從出發(fā)到兩船相遇共航行了x海里,過D點(diǎn)作DF⊥CB于F,連接DE,則DE=x,AB+BE=2x,根據(jù)D點(diǎn)是AC的中點(diǎn),得DF=AB=100,EF=400-100-2x,在Rt△DFE中,DE2=DF2+EF2,得x2=1002+(300-2x)2解方程求解即可.
解答:解:(1)B

(2)設(shè)貨輪從出發(fā)到兩船相遇共航行了x海里,過D點(diǎn)作DF⊥CB于F,連接DE,則DE=x,AB+BE=2x,
∵D點(diǎn)是AC的中點(diǎn),
∴DF=AB=100,EF=400-100-2x,
在Rt△DFE中,DE2=DF2+EF2,得x2=1002+(300-2x)2,
解得x=200±
∵200+>100(舍去),
∴DE=200-
答:貨輪從出發(fā)到兩船相遇共航行了(200-)海里.
點(diǎn)評(píng):當(dāng)三角形中有中點(diǎn)時(shí),常作三角形的中位線.要熟練掌握勾股定理并能利用它作為相等關(guān)系列方程求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2002•南京)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足是G,F(xiàn)是CG的中點(diǎn),延長(zhǎng)AF交⊙O于E,CF=2,AF=3,則EF的長(zhǎng)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江蘇省南京市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•南京)如圖,在正方形ABCD中,點(diǎn)E、F分別是AD,BC的中點(diǎn).
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江蘇省南京市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•南京)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足是G,F(xiàn)是CG的中點(diǎn),延長(zhǎng)AF交⊙O于E,CF=2,AF=3,則EF的長(zhǎng)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江蘇省南京市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•南京)如圖,正六邊形ABCDEF的邊長(zhǎng)為a,分別以C,F(xiàn)為圓心,a為半徑畫弧,則圖中的陰影部分的面積是( )

A.πa2
B.πa2
C.πa2
D.πa2

查看答案和解析>>

同步練習(xí)冊(cè)答案