【題目】【問題情境】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:

如圖:已知在RtABC中,AC=BC,ACB=90°,CDAB于點D,點E、F分別在A和BC上,1=2,F(xiàn)GAB于點G,求證:CDE≌△EGF.

(1)閱讀理解,完成解答

本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請你完整地書寫這道練習(xí)題的證明過程;

(2)特殊位置,證明結(jié)論

若CE平分ACD,其余條件不變,求證:AE=BF;

(3)知識遷移,探究發(fā)現(xiàn)

如圖,已知在RtABC中,AC=BC,ACB=90°,CDAB于點D,若點E是DB的中點,點F在直線CB上且滿足EC=EF,請直接寫出AE與BF的數(shù)量關(guān)系.(不必寫解答過程)

【答案】(1)證明過程見解析;(2)證明過程見解析;(3)AE=BF.

【解析】

試題分析:(1)先證明CE=EF,根據(jù)AAS即可證明CDE≌△EGF;(2)先證ACE=2,再證明ACE≌△BEF,即可得出AE=BF;(3)作EHBC與H,設(shè)DE=x,求出AE=3x,再證出BF=x,即可得出結(jié)論.

試題解析:(1)AC=BC,ACB=90°, ∴∠A=B=45°, CDAB, ∴∠CDB=90°,

∴∠DCB=45° ∵∠ECF=DCB+1=45°+1,EFC=B+2=45°+2,1=2, ∴∠ECF=EFC,

CE=EF, CDAB,F(xiàn)GAB, ∴∠CDE=EGF=90°,

CDE和EGF中,,∴△CDE≌△EGF(AAS);

(2)由(1)得:CE=EF,A=B, CE平分ACD, ∴∠ACE=1, ∵∠1=2,∴∠ACE=2,

ACE和BEF中,,∴△ACE≌△BEF(AAS),AE=BF;

(3)AE=BF,作EHBC與H,如圖3所示:

設(shè)DE=x,根據(jù)題意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x, 根據(jù)勾股定理得:BC=AC=2x,

∵∠ABC=45°,EHBC, BH=x, CH=BCBH=x, EC=EF, FH=CH=x,

BF=xx=x, , AE=BF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是平行四邊形,對角線AC、BD交于點O,E是BC的中點,以下說法錯誤的是( 。

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC與△DEF中,如果∠A=∠D,∠B=∠E,要使這兩個三角形全等,還需要的條件可以是(
A.AB=EF
B.BC=EF
C.AB=AC
D.∠C=∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式17﹣3x>2的正整數(shù)解的數(shù)量是(
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=(x﹣1)2+3的對稱軸是(
A.直線x=1
B.直線x=3
C.直線x=﹣1
D.直線x=﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=(m﹣2)x2+2x+(m2﹣4)的圖象經(jīng)過原點,則m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會活動,活動后,就活動的5個主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學(xué)生共有多少名?

(2)請將條形統(tǒng)計圖補(bǔ)充完整,并在扇形統(tǒng)計圖中計算出“進(jìn)取”所對應(yīng)的圓心角的度數(shù).

(3)如果要在這5個主題中任選兩個進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件中是必然事件的是( 。

A. 兩弧長相等,則兩弧所對圓心角相等

B. 平分弦的直徑,也平分這條弦所對的弧

C. 圓內(nèi)接正五邊形的中心角為72°

D. 兩圓相切,一定內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的圓O與AD、AC分別交于點E、F,且∠ACB=∠DCE.

(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)若tan∠ACB=,BC=2,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案