【題目】如圖,在平面直角坐標(biāo)系xOy中,已知矩形OACB的邊OA,OB分別在x軸上和y軸上,線段OA=24,OB=12;點P從點O開始沿OA邊勻速移動,點M從點B開始沿BO邊勻速移動.如果點P,點M同時出發(fā),它們移動的速度相同都是1個單位/秒,設(shè)經(jīng)過x秒時(0≤x≤12),△POM的面積為y.

(1)求直線AB的解析式;

(2)求y與x的函數(shù)關(guān)系式;

(3)連接矩形的對角線AB,當(dāng)x為何值時,以M、O、P為頂點的三角形等于AOB面積的;

(4)當(dāng)POM的面積最大時,將POM沿PM所在直線翻折后得到PDM,試判斷D點是否在直線AB上,請說明理由.

【答案】(1)y=;(2)y=;(3)6;(4)點D不在直線AB上.

【解析】

(1)設(shè)直線AB的解析式為y=kx+b,用待定系數(shù)法即可求解;

(2)根據(jù)S△OMP=,即可求解;

(3)根據(jù)面積之間關(guān)系列出等式即可求解;

(4)當(dāng)△POM的面積最大時,將△POM沿PM據(jù)直線翻折后得到△PDM,先求出D點坐標(biāo),看是否在直線y=上即可判斷.

(1)設(shè)直線AB的解析式為y=kx+b,

A點坐標(biāo)為(24,0),B為(0,12),

把A、B兩點的坐標(biāo)代入上式,得:,

解得,

∴y=;

(2)∵SOMP=,

∴y=,即y=;

(3)∵SAOB=,

SAOB=18,即y=18,

當(dāng)=18時,解得:x=6;

(4)當(dāng)△POM的面積最大時,將△POM沿PM據(jù)直線翻折后得到△PDM,

當(dāng)x=﹣=6時,S△POM=y有最大值.

此時OP=6,OM=12﹣x=6

∴△OMP是等腰直角三角形.

∵將△POM沿PM所在直線翻折后得到△POM.

∴四邊形OPDM是正方形

∴D(6,6),

把D(6,6)代入y=

x=6時,y=﹣×6+12=9≠6

∴點D不在直線AB上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù),…滿足下列條件:,,…,依次類推,則的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩小朋友都從地出發(fā),勻速步行到地(、兩地之間為筆直的道路)甲出發(fā)半分鐘后,乙才從地出發(fā),經(jīng)過一段時間追上甲,兩人繼續(xù)向地步行,當(dāng)甲、乙之間的距離剛好是70米時,乙立刻掉頭以原速度向地步行,半分鐘后與甲相遇,乙又立刻掉頭向地以原速度步行(兩次掉頭時間忽略不計).甲、乙相距的路程為(米)與乙出發(fā)的時(分鐘)之間的關(guān)系如圖所示,當(dāng)乙到達(dá)地時,甲與地相距的路程是__________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB∥CD,AD∥BC, AB=3,BC=4,將矩形紙片沿BD折疊,使點A落在點E處,設(shè)DE與BC相交于點F.

(1)判斷△BDF的形狀,并說明理由;

(2)求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是(

A.關(guān)于某直線對稱的兩個三角形是全等三角形B.全等三角形是關(guān)于某直線對稱的

C.兩個圖形關(guān)于某直線對稱,則這兩個圖形一定分別位于這條直線的兩側(cè)D.有一條公共邊的兩個全等三角形關(guān)于公共邊所在的直線對稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點,與y軸交于點C,已知點A(﹣1,0),點C(0,2)

(1)求拋物線的函數(shù)解析式;

(2)若D是拋物線位于第一象限上的動點,求△BCD面積的最大值及此時點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點C、A、D在同一條直線上,ABC=ADE=α,線段 BD、CE交于點M.

(1)如圖1,若AB=AC,AD=AE

問線段BD與CE有怎樣的數(shù)量關(guān)系?并說明理由;

BMC的大。ㄓ忙帘硎荆;

(2)如圖2,若AB= BC=kAC,AD =ED=kAE則線段BD與CE的數(shù)量關(guān)系為 ,BMC= (用α表示);

(3)在(2)的條件下,把ABC繞點A逆時針旋轉(zhuǎn)180°,在備用圖中作出旋轉(zhuǎn)后的圖形(要求:尺

規(guī)作圖,不寫作法,保留作圖痕跡),連接 EC并延長交BD于點M.BMC= (用α表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程,下列說法正確的是(

A. 當(dāng)k=0時,方程沒有實數(shù)根 B. 當(dāng)k=1時,方程有一個實數(shù)根

C. 當(dāng)k=-1時,方程有兩個相等的實數(shù)根 D. 當(dāng)k≠0時,方程總有兩個不相等的實數(shù)根

查看答案和解析>>

同步練習(xí)冊答案