【題目】實(shí)驗(yàn)證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等.

(1)如圖,一束光線射到平面鏡上,被反射到平面鏡上,又被反射,若被反射出的光線與光線平行,且,則_________,________.

(2)在(1)中,若,則_______;若,則________;

(3)由(1)、(2),請(qǐng)你猜想:當(dāng)兩平面鏡、的夾角________時(shí),可以使任何射到平面鏡上的光線,經(jīng)過(guò)平面鏡、的兩次反射后,入射光線與反射光線平行.請(qǐng)說(shuō)明理由.

【答案】1100°,90°;(290°90°;(390°,理由見(jiàn)解析.

【解析】

試題根據(jù)入射角與反射角相等,可得∠1=4,5=6.
(1)根據(jù)鄰補(bǔ)角的定義可得∠7=80°,根據(jù)mn,所以∠2=100°,5=40°,根據(jù)三角形內(nèi)角和為180°,即可求出答案;
(2)結(jié)合題(1)可得∠3的度數(shù)都是90°;
(3)證明mn,由∠3=90°,證得∠2與∠7互補(bǔ)即可.

試題解析:

(1)

∵入射角與反射角相等,即∠1=4,5=6,

根據(jù)鄰補(bǔ)角的定義可得

根據(jù)mn,所以

所以

根據(jù)三角形內(nèi)角和為所以

(2)

(1)可得∠3的度數(shù)都是

(3)

理由:因?yàn)椤?/span>3=

所以∠4+5=

又由題意知∠1=4,5=6,

由同旁內(nèi)角互補(bǔ),兩直線平行,可知:mn.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小華在某月的日歷中圈出幾個(gè)數(shù),算得這三個(gè)數(shù)的和為36,那么這幾個(gè)數(shù)的形式可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是以BC為底的等腰三角形,AD是邊BC上的高,點(diǎn)E、F分別是ABAC的中點(diǎn).

1)求證:四邊形AEDF是菱形;

2)如果四邊形AEDF的周長(zhǎng)為12,兩條對(duì)角線的和等于7,求四邊形AEDF的面積S

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩支清雪隊(duì)同時(shí)開(kāi)始清理某路段積雪,一段時(shí)間后,乙隊(duì)被調(diào)往別處,甲隊(duì)又用了3小時(shí)完成了剩余的清雪任務(wù),已知甲隊(duì)每小時(shí)的清雪量保持不變,乙隊(duì)每小時(shí)清雪50噸,甲、乙兩隊(duì)在此路段的清雪總量y(噸)與清雪時(shí)間x(時(shí))之間的函數(shù)圖象如圖所示.
(1)乙隊(duì)調(diào)離時(shí),甲、乙兩隊(duì)已完成的清雪總量為噸;
(2)求此次任務(wù)的清雪總量m;
(3)求乙隊(duì)調(diào)離后y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明、小亮、小剛、小穎一起研究一道數(shù)學(xué)題.如圖,已知EFAB,CDAB.

小明說(shuō):如果還知道∠CDG=BFE,那么能得到∠AGD=ACB.”

小亮說(shuō):把小明的已知和結(jié)論倒過(guò)來(lái),即由∠AGD=ACB,可得到∠CDG=BFE.”

小剛說(shuō):AGD一定大于∠BFE.”

小穎說(shuō):如果連結(jié)GF,那么GF一定平行于AB.”

他們四人中,有________個(gè)人的說(shuō)法是正確的.(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,它表示甲乙兩人從同一個(gè)地點(diǎn)出發(fā)后的情況根據(jù)圖像判斷,下列說(shuō)法錯(cuò)誤的是()

A. 甲是 8 點(diǎn)出發(fā)的

B. 乙是 9 點(diǎn)出發(fā)的,到 10 點(diǎn)時(shí)他大約走了 10 千米

C. 10 點(diǎn)為止,乙的速度快

D. 兩人在 12 點(diǎn)再次相遇

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D AB的中點(diǎn).

(1)如果點(diǎn) P 在線段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在線段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動(dòng).

若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,經(jīng)過(guò) 1 秒后,△BPD △CQP 是否全等,請(qǐng)說(shuō)明理由;

若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD △CQP 全等?

(2)若點(diǎn) Q 以②中的運(yùn)動(dòng)速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來(lái)的運(yùn)動(dòng)速度從點(diǎn) B 同時(shí)出發(fā),都逆時(shí)針沿△ABC 三邊運(yùn)動(dòng),則經(jīng)過(guò) 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某長(zhǎng)方形廣場(chǎng)的四個(gè)角都有一個(gè)半徑相同的四分之一圓形的草地,若圓形的半徑為x米,長(zhǎng)方形長(zhǎng)為a米,寬為b

1分別用代數(shù)式表示草地和空地的面積;

2若長(zhǎng)方形長(zhǎng)為300米,寬為200米,圓形的半徑為10米,求廣場(chǎng)空地的面積(計(jì)算結(jié)果保留到整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中點(diǎn)A, ),B2,0),點(diǎn)C為線段OB上一個(gè)動(dòng)點(diǎn),以AC為腰作等腰直角ACD,且AC=AD

(1)△AOB的面積;

(2)證明:OC2+CB2=CD2

查看答案和解析>>

同步練習(xí)冊(cè)答案