【題目】如圖,已知以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為弧BE的中點,連接AD交OE于點F,若AC=FC
(Ⅰ)求證:AC是⊙O的切線;
(Ⅱ)若BF=5,DF=,求⊙O的半徑.
【答案】(1)證明見解析;(2)4.
【解析】
試題分析:(1)連接OA、OD,求出∠D+∠OFD=90°,推出∠CAF=∠CFA,∠OAD=∠D,求出∠OAD+∠CAF=90°,根據(jù)切線的判定推出即可;
(2)OD=r,OF=8﹣r,在Rt△DOF中根據(jù)勾股定理得出方程r2+(8﹣r)2=()2,求出即可.
試題解析:(1)連接OA、OD,
∵D為弧BE的中點,
∴OD⊥BC,
∠DOF=90°,
∴∠D+∠OFD=90°,
∵AC=FC,OA=OD,
∴∠CAF=∠CFA,∠OAD=∠D,
∵∠CFA=∠OFD,
∴∠OAD+∠CAF=90°,
∴OA⊥AC,
∵OA為半徑,
∴AC是⊙O切線;
(2)∵⊙O半徑是r,
∴OD=r,OF=5﹣r,
在Rt△DOF中,r2+(5﹣r)2=()2,
r=4,r=1(舍),
即⊙O的半徑r為4.
科目:初中數(shù)學 來源: 題型:
【題目】下列命題不正確的是( )
A.對角線互相平分且一組鄰邊相等的四邊形是菱形
B.兩組對邊分別平行且一組鄰邊相等的四邊形是菱形
C.兩組對角分別相等且一組鄰邊相等的四邊形是菱形
D.對角線互相垂直且相等的四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.
(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;
(2)設x1,x2分別是方程的兩個根,且滿足x12+x22=x1x2+10,求實數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織了“講文明、守秩序、迎南博”知識競賽活動,從中抽取了7名同學的參賽成績?nèi)缦?/span>(單位:分):80,90,70,100,60,80,80,則這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )
A. 90,80 B. 70,80
C. 80,80 D. 100,80
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將7張長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設左上角與右下角的陰影部分的面積的差為S,當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足( )
A.a=b
B.a=3b
C.a=2b
D.a=4b
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,E是AC邊上的一點,且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙O交AC于點D,交BE于點F.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com