【題目】在國家大數(shù)據(jù)戰(zhàn)略的引領(lǐng)下,我國在人工智能領(lǐng)域取得顯著成就,自主研發(fā)的人工智能“絕藝”獲得全球最前沿的人工智能賽事冠軍,這得益于所建立的大數(shù)據(jù)中心的規(guī)模和數(shù)據(jù)存儲量,它們決定著人工智能深度學(xué)習(xí)的質(zhì)量和速度,其中的一個大數(shù)據(jù)中心能存儲580億本書籍,將580億用科學(xué)記數(shù)法表示應(yīng)為( ).
A.B.C.D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)且),已知當(dāng)時,;當(dāng)時,,請對該函數(shù)及其圖像進(jìn)行如下探究:
(1)求函數(shù)的解析式;
(2)如圖,請在平面直角坐標(biāo)系中,畫出該函數(shù)的圖像;
(3)結(jié)合所畫函數(shù)圖像,請寫出該函數(shù)的一條性質(zhì);
(4)解決問題:若函數(shù)與至少有兩個公共點(diǎn),請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙P的直徑,點(diǎn)C在⊙P上,D為⊙P外一點(diǎn),且∠ADC=90°,2∠B+∠DAB=180°.
(1)證明:直線CD為⊙P的切線;
(2)若DC=2,AD=4,求⊙P的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶一中開展了“愛生活愛運(yùn)動”的活動,以鼓勵學(xué)生積極參與體育鍛煉.為了解學(xué)生每周體育鍛煉時間,學(xué)校在活動之前對八年級同學(xué)進(jìn)行了抽樣調(diào)査,并根據(jù)調(diào)査結(jié)果將學(xué)生每周的體育鍛煉時間分為3小時、4小時、5小時、6小時、7小時共五種情況.小明根據(jù)調(diào)查結(jié)構(gòu)制作了如圖兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
(整理數(shù)據(jù))
“愛生活愛運(yùn)動”的活動結(jié)束之后,再次抽查這部分學(xué)生的體育鍛煉時間:
一周體育鍛煉時間(小時) | 3 | 4 | 5 | 6 | 7 |
人數(shù) | 3 | 5 | 15 | a | 10 |
活動之后部分學(xué)生體育鍛煉時間的統(tǒng)計表
(分析數(shù)據(jù))
平均數(shù) | 中位數(shù) | 眾數(shù) | |
活動之前鍛煉時間(小時) | 5 | 5 | 5 |
活動之后鍛煉時間(小時) | 5.52 | b | c |
請根據(jù)調(diào)查信息
(1)補(bǔ)全條形統(tǒng)計圖,并計算a= ,b= 小時,c= 小時;
(2)小亮同學(xué)在活動之前與活動之后的這兩次調(diào)查中,體育鍛煉時間均為5小時,根據(jù)體育鍛煉時間由多到少進(jìn)行排名統(tǒng)計,請問他在被調(diào)查同學(xué)中體育鍛煉時間排名靠前的是 (填“活動之前”或“活動之后”),理由是 ;
(3)已知八年級共2200名學(xué)生,請估算全年級學(xué)生在活動結(jié)束后,每周體育鍛煉時間至少有6小時的學(xué)生人數(shù)有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,E是CD邊上的點(diǎn),過點(diǎn)E作EF⊥BD于F.
(1)尺規(guī)作圖:在圖中求作點(diǎn)E,使得EF=EC;(保留作圖痕跡,不寫作法)
(2)在(1)的條件下,連接FC,求∠BCF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在BC邊上,點(diǎn)F在BC延長線上,且∠CDF =∠BAE.
(1)求證:四邊形AEFD是平行四邊形;
(2)若DF=3,DE=4,AD=5,求CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是斜邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:BD=AF;
(2)判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與x軸,y軸分別相交于A,B兩點(diǎn),且與反比例函數(shù)y=交于點(diǎn)C,D.作CE⊥x軸,垂足為E,CF⊥y軸,垂足為F.點(diǎn)B為OF的中點(diǎn),四邊形OECF的面積為16,點(diǎn)D的坐標(biāo)為(4,﹣b).
(1)求一次函數(shù)表達(dá)式和反比例函數(shù)表達(dá)式;
(2)求出點(diǎn)C坐標(biāo),并根據(jù)圖象直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:(1)4a+2b+c<0;(2)方程ax2+bx+c=0兩根都大于零;(3)y隨x的增大而增大;(4)一次函數(shù)y=x+bc的圖象一定不過第二象限.其中正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com