(2012•市南區(qū)模擬)如圖,已知正方形ABCD的邊長(zhǎng)與Rt△PQR的直角邊PQ的長(zhǎng)均為4cm,QR=8cm,AB與QR在同一直線(xiàn)l上,開(kāi)始時(shí)點(diǎn)Q與點(diǎn)A重合,讓△PQR以1cm/s的速度在直線(xiàn)l上運(yùn)動(dòng),同時(shí)M點(diǎn)從點(diǎn)Q出發(fā)以1cm/s沿QP運(yùn)動(dòng),直至點(diǎn)Q與點(diǎn)B重合時(shí),都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s),四邊形PMBN的面積為S(cm
2).
(1)當(dāng)t=1s時(shí),求S的值;
(2)求S與t之間的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍(不考慮端點(diǎn));
(3)是否存在某一時(shí)刻t,使得四邊形PMBN的面積
S=S△PQR?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由;
(4)是否存在某一時(shí)刻t,使得四邊形PMBN為平行四邊形?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.