【題目】如圖,反比例函數(shù)(k≠0)圖象與一次函數(shù)圖象相交于A(1,3),B(m,1)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式.
(2)已知點(diǎn)P(a,0)(a>0),過(guò)點(diǎn)P作平行于y軸的直線,在第一象限內(nèi)與一次函數(shù)的圖象相交于點(diǎn)M,與反比例函數(shù)上的圖象相交于點(diǎn)N.若PM>PN,結(jié)合函數(shù)圖象直接寫出a的取值范圍.
【答案】(1),;(2)1<a<3
【解析】
(1)把A代入反比例函數(shù)的解析式即可求得k的值,然后求得B的值,利用待定系數(shù)法即可求得一次函數(shù)的解析式;
(2)畫出函數(shù)圖象,根據(jù)圖象可得解.
(1)∵函數(shù)(k≠0)圖象經(jīng)過(guò)點(diǎn)A(1,3),
∴k=1×3=3
∴反比例函數(shù)的表達(dá)式是,
又函數(shù)經(jīng)過(guò)點(diǎn)B(m,1),
∴m=3
∴B(3,1),
把A(1,3)代入y=-x+b,得b=4,
∴一次函數(shù)的表達(dá)式是.
(2)如圖所示,
由圖象可得:當(dāng)1<a<3時(shí),PM>PN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠BCA=90°,AC=BC,點(diǎn)D是BC的中點(diǎn),點(diǎn)F在線段AD上,DF=CD,BF交CA于E點(diǎn),過(guò)點(diǎn)A作DA的垂線交CF的延長(zhǎng)線于點(diǎn)G,下列結(jié)論:①CF2=EFBF;②AG=2DC;③AE=EF;④AFEC=EFEB.其中正確的結(jié)論有( 。
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-2x+m=0,有兩個(gè)不相等的實(shí)數(shù)根.
⑴求實(shí)數(shù)m的最大整數(shù)值;
⑵在⑴的條下,方程的實(shí)數(shù)根是x1,x2,求代數(shù)式x12+x22-x1x2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(操作體驗(yàn))
如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點(diǎn)P,使得∠APB=30°,如圖②,小明的作圖方法如下:
第一步:分別以點(diǎn)A,B為圓心,AB長(zhǎng)為半徑作弧,兩弧在AB上方交于點(diǎn)O;
第二步:連接OA,OB;
第三步:以O為圓心,OA長(zhǎng)為半徑作⊙O,交l于;
所以圖中即為所求的點(diǎn).(1)在圖②中,連接,說(shuō)明∠=30°
(方法遷移)
(2)如圖③,用直尺和圓規(guī)在矩形ABCD內(nèi)作出所有的點(diǎn)P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).
(深入探究)
(3)已知矩形ABCD,BC=2.AB=m,P為AD邊上的點(diǎn),若滿足∠BPC=45°的點(diǎn)P恰有兩個(gè),則m的取值范圍為________.
(4)已知矩形ABCD,AB=3,BC=2,P為矩形ABCD內(nèi)一點(diǎn),且∠BPC=135°,若點(diǎn)P繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°到點(diǎn)Q,則PQ的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=x的圖像與反比例函數(shù)y=的圖像交于A,B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(6,a).
(1)求反比例函數(shù)的表達(dá)式;
(2)已知點(diǎn)C(b,4)在反比例函數(shù)y=的圖像上,點(diǎn)P在x軸上,若△AOC的面積等于△AOP的面積的兩倍,請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】受新冠疫情影響,3月1日起,“君樂(lè)買菜”網(wǎng)絡(luò)公司某種蔬菜的銷售價(jià)格開始上漲.如圖1,前四周該蔬菜每周的平均銷售價(jià)格y(元/kg)與周次x(x是正整數(shù),1≤x<5)的關(guān)系可近似用函數(shù)刻畫;進(jìn)入第5周后,由于外地蔬菜的上市,該蔬菜每周的平均銷售價(jià)格y(元/kg)從第5周的6元/kg下降至第6周的5.6元/kg,y與周次x(5≤x≤7)的關(guān)系可近似用函數(shù)刻畫.
(1)求a,b的值.
(2)若前五周該蔬菜的銷售量m(kg)與每周的平均銷售價(jià)格y(元/kg)之間的關(guān)系可近似地用如圖2所示的函數(shù)圖象刻畫,第6周的銷售量與第5周相同:
①求m與y的函數(shù)表達(dá)式;
②在前六周中,哪一周的銷售額w(元)最大?最大銷售額是多少?
(3)若該蔬菜第7周的銷售量是100kg,由于受降雨的影響,此種蔬菜第8周的可銷售量將比第7周減少a%(a>0).為此,公司又緊急從外地調(diào)運(yùn)了5噸此種蔬菜,剛好滿足本地市民的需要,且使此種蔬菜第8周的銷售價(jià)格比第7周僅上漲0.8a%.若在這一舉措下,此種蔬菜在第8周的總銷售額與第7周剛好持平,請(qǐng)通過(guò)計(jì)算估算出a的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸正半軸上,線段OB的長(zhǎng)是方程x2﹣2x﹣8=0的解,tan∠BAO=.
(1)求點(diǎn)A的坐標(biāo);
(2)點(diǎn)E在y軸負(fù)半軸上,直線EC⊥AB,交線段AB于點(diǎn)C,交x軸于點(diǎn)D,S△DOE=16.若反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)C,求k的值;
(3)在(2)條件下,點(diǎn)M是DO中點(diǎn),點(diǎn)N,P,Q在直線BD或y軸上,是否存在點(diǎn)P,使四邊形MNPQ是矩形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P為二次函數(shù)y=x2﹣2x﹣3圖象上一點(diǎn),設(shè)這個(gè)二次函數(shù)的圖象與x軸交于A,B兩點(diǎn)(A在B的右側(cè)),與y軸交于C點(diǎn),若△APC為直角三角形且AC為直角邊,則點(diǎn)P的橫坐標(biāo)的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)能減排,我市某校準(zhǔn)備購(gòu)買某種品牌的節(jié)能燈,已知3只A型節(jié)能燈和5只B型節(jié)能燈共需50元,2只A型節(jié)能燈和3只B型節(jié)能燈共需31元.
(1)求1只A型節(jié)能燈和1只B型節(jié)能燈的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購(gòu)買這兩種型號(hào)的節(jié)能燈共200只,要求A型節(jié)能燈的數(shù)量不超過(guò)B型節(jié)能燈的數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com