【題目】定義:若一個(gè)三角形中,其中有一個(gè)內(nèi)角是另外一個(gè)內(nèi)角的一半,則這樣的三角形叫做半角三角形”. 例如:等腰直角三角形就是半角三角形”.在鈍角三角形中,,,,過點(diǎn)的直線邊于點(diǎn).點(diǎn)在直線上,且

1)若,點(diǎn)延長線上.

當(dāng),點(diǎn)恰好為中點(diǎn)時(shí),依據(jù)題意補(bǔ)全圖1.請寫出圖中的一個(gè)半角三角形_______;

如圖2,若,圖中是否存在半角三角形除外),若存在,請寫出圖中的半角三角形,并證明;若不存在,請說明理由;

2)如圖3,若,保持的度數(shù)與(1)中②的結(jié)論相同,請直接寫出,, 滿足的數(shù)量關(guān)系:______

【答案】1)① 如圖,見解析;△或△或△或△; ②存在,“半角三角形”為△;證明見解析;2

【解析】

1)①根據(jù)題干描述作出圖形即可,利用等腰三角形的性質(zhì),根據(jù)“一個(gè)內(nèi)角是另外一個(gè)內(nèi)角的一半”的三角形符合題意,可得出結(jié)果.②延長,使得,連接,構(gòu)造全等三角形△≌△.再利用全等三角形的性質(zhì)以及相關(guān)角度的轉(zhuǎn)化,可求得,從而可得出結(jié)果.

2)由(1)中②可知,,延長到點(diǎn),使得,連接BF,構(gòu)造全等三角形△≌△,進(jìn)而可得出.因?yàn)?/span>,所以以為圓心,長為半徑作圓與直線一定有兩個(gè)交點(diǎn),當(dāng)?shù)谝环N情況成立時(shí),必定存在一個(gè)與它互補(bǔ)的,所以可得出另外一種情況.

1)① 如圖,

圖中的一個(gè) “半角三角形”:△或△或△或△;
存在,“半角三角形”為△.

延長,使得,連接

,

.

.

,

中,

≌△.

,.

,

.

∴∠BAE=2BEA,

∴△ 為“半角三角形”.

2.

解:延長到點(diǎn),使得,連接BF,

,,

∴△≌△.

過點(diǎn)分別作于點(diǎn)

于點(diǎn),

可得.

.

②因?yàn)?/span>,所以以為圓心,長為半徑作圓與直線一定有兩個(gè)交點(diǎn),當(dāng)?shù)谝环N情況成立時(shí),必定存在一個(gè)與它互補(bǔ)的

可知:.

綜上所述,這三個(gè)角之間的關(guān)系有兩種,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,內(nèi)含于,的弦于點(diǎn),且.若陰影部分的面積為,則弦的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,ADBC,垂足為D,且AD6EAC邊上的中點(diǎn),MAD邊上的動點(diǎn),則EM+CM的最小值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)E上的一點(diǎn),∠DBC=∠BED

1)求證:BC⊙O的切線;

2)已知AD=3CD=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題背景)

如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)是,點(diǎn)軸上的一個(gè)動點(diǎn).當(dāng)點(diǎn)軸上移動時(shí),始終保持是等腰直角三角形,且(點(diǎn)、、按逆時(shí)針方向排列);當(dāng)點(diǎn)移動到點(diǎn)時(shí),得到等腰直角三角形(此時(shí)點(diǎn)與點(diǎn)重合).

(初步探究)

(1)寫出點(diǎn)的坐標(biāo)______.

(2)點(diǎn)軸上移動過程中,當(dāng)?shù)妊苯侨切?/span>的頂點(diǎn)在第四象限時(shí),連接.

求證:;

(深入探究)

(3)當(dāng)點(diǎn)軸上移動時(shí),點(diǎn)也隨之運(yùn)動.經(jīng)過探究發(fā)現(xiàn),點(diǎn)的橫坐標(biāo)總保持不變,請直接寫出點(diǎn)的橫坐標(biāo):______.

(拓展延伸)

(4)點(diǎn)軸上移動過程中,當(dāng)為等腰三角形時(shí),直接寫出此時(shí)點(diǎn)的坐標(biāo).

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,AB=AC,DBC的中點(diǎn),動點(diǎn)E在邊AB上(點(diǎn)E不與點(diǎn)A,B重合), 動點(diǎn)F在射線AC上,連結(jié)DE, DF.

(1)如圖1,當(dāng)∠DEB=DFC=90°時(shí),直接寫出DEDF的數(shù)量關(guān)系;

(2)如圖2,當(dāng)∠DEB+DFC=180°(DEB≠DFC)時(shí),猜想DEDF的數(shù)量關(guān)系,并證明;

(3)當(dāng)點(diǎn)E,D,F在同一條直線上時(shí),

①依題意補(bǔ)全圖3;

②在點(diǎn)E運(yùn)動的過程中,是否存在EB=FC 存在不存在.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AD平分∠BACBCD,∠MDN的兩邊分別與ABAC相交于M,N兩點(diǎn),且DM=DN.

1)如圖甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,NDAB.

①寫出∠MDA= °,AB的長是 .

②求四邊形AMDN的周長;

2)如圖乙,過DDFACF,先補(bǔ)全圖乙再證明AM+AN=2AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一塊含有角的三角板放置在一條直線上,邊與直線重合,邊的垂直平分線與邊分別交于兩點(diǎn),連接.

(1) 三角形;

(2)直線上有一動點(diǎn)(不與點(diǎn)重合) ,連接并把繞點(diǎn)順時(shí)針旋轉(zhuǎn),連接.當(dāng)點(diǎn)在圖2所示的位置時(shí),證明.我們可以用來證明,從而得到.當(dāng)點(diǎn)移動到圖3所示的位置時(shí),結(jié)論是否依然成立?若成立,請你寫出證明過程;若不成立,請你說明理由.

(3)當(dāng)點(diǎn)邊上移動時(shí)(不與點(diǎn)重合)周長的最小值是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為美化校園,計(jì)劃對面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4.

1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?

2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬元,乙隊(duì)為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

同步練習(xí)冊答案