【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,分別過B,C向過點A的直線作垂線,垂足分別為點E,F(xiàn).
(1)如圖(1),過A的直線與斜邊BC不相交時,求證:①△ABE≌△CAF; ②EF=BE+CF
(2)如圖(2),過A的直線與斜邊BC相交時,其他條件不變,若BE=10,CF=3,試求EF的長.
【答案】
(1)證明:
①∵BE⊥EF,CF⊥EF,
∴∠AEB=∠CFA=90°,
∴∠EAB+∠EBA=90°,
∵∠BAC=90°,
∴∠EAB+∠FAC=90°,
∴∠EBA=∠FAC,
在△AEB與△CFA中
∴△ABE≌△CAF(AAS),
②∵△ABE≌△CAF,
∴EA=FC,EB=FA,
∴EF=AF+AE
=BE+CF
(2)解:∵BE⊥AF,CF⊥AF
∴∠AEB=∠CFA=90°
∴∠EAB+∠EBA=90°
∵∠BAC=90°
∴∠EAB+∠FAC=90°
∴∠EBA=∠FAC,
在△AEB與△CFA中
∴△ABE≌△CAF(AAS),
∴EA=FC,EB=FA,
∴EF=FA﹣EA=EB﹣FC=10﹣3=7
【解析】(1)①由條件可求得∠EBA=FAC,利用AAS可證明△ABE≌△CAF;②利用全等三角形的性質(zhì)可得EA=FC,EB=FA,利用線段的和差可證得結論;(2)同(1)可證明△ABE≌△CAF,可證得EF=FA﹣EA,代入可求得EF的長.
科目:初中數(shù)學 來源: 題型:
【題目】解答題
(1)一個數(shù)的絕對值是指在數(shù)軸上表示這個數(shù)的點到的距離;
(2)若|a|=﹣a,則a0;
(3)有理數(shù)a、b在數(shù)軸上的位置如圖所示,請化簡|a|+|b|+|a+b|.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中以點A為圓心,AB為半徑作圓A交網(wǎng)格于點C(如圖(1)),過點C作圓的切線交網(wǎng)格于點D,以點A為圓心,AD為半徑作圓交網(wǎng)格于點E(如圖(2)).
問題:
(1)求∠ABC的度數(shù);
(2)求證:△AEB≌△ADC;
(3)△AEB可以看作是由△ADC經(jīng)過怎樣的變換得到的?并判斷△AED的形狀(不用說明理由).
(4)如圖(3),已知直線a,b,c,且a∥b,b∥c,在圖中用直尺、三角板、圓規(guī)畫等邊三角形A′B′C′使三個頂點A′,B′,C′,分別在直線a,b,c上.要求寫出簡要的畫圖過程,不需要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系;
(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用一個5倍的放大鏡去觀察一個三角形,對此,四位同學有如下說法:
甲說:三角形的每個內(nèi)角都擴大到原來的5倍;
乙說:三角形的每條邊都擴大到原來的5倍;
丙說:三角形的面積擴大到原來的5倍;
丁說:三角形的周長都擴大到原來的5倍.上述說法中正確的是( )
A. 甲和乙B. 乙和丙C. 丙和丁D. 乙和丁
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家面臨倒閉的企業(yè)在“調(diào)整產(chǎn)業(yè)結構,轉變經(jīng)營機制”的改革后,扭虧為盈. 下表是該企業(yè)2015年8~12月、2016年第一季度的月利潤統(tǒng)計表:
根據(jù)以上信息,解答下列問題:
(1)2015年8月至2016年1月該企業(yè)利潤的月平均利潤為萬元,月利潤的中位數(shù)為萬元;
(2)已知該企業(yè)2016年2、3月份的月利潤的平均增長率相同,求這個平均增長率和2月份的月利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】科學實驗證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的角相等.
(1)如圖,一束光線m射到平面鏡a上,被a反射到平面鏡b上,又被b鏡反射,若b反射出的光線n平行于m,且∠1=50°,則∠2= , ∠3=;
(2)在(1)中,若∠1=40°,則∠3= , 若∠1=55°,則∠3=;
(3)由(1)(2)請你猜想:當∠3=時,任何射到平面鏡a上的光線m經(jīng)過平面鏡a和b的兩次反射后,入射光線m與反射光線n總是平行的?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com