【題目】如圖,AB是⊙O的直徑,過⊙O外一點(diǎn)P作⊙O的兩條切線PC,PD,切點(diǎn)分別為C,D,連接OP,CD

1)求證:OPCD;

2)連接ADBC,若∠DAB50°,∠CBA70°,OA2,求OP的長(zhǎng).

【答案】(1)詳見解析;(2).

【解析】

1)方法1、先判斷出RtODPRtOCP,得出∠DOP=∠COP,即可得出結(jié)論;
方法2、判斷出OPCD的垂直平分線,即可得出結(jié)論;
2)先求出∠COD60°,得出△OCD是等邊三角形,最后用銳角三角函數(shù)即可得出結(jié)論.

解:(1)方法1、連接OC,OD,

OCOD,

PDPC是⊙O的切線,

∵∠ODP=∠OCP90°

RtODPRtOCP中,

RtODPRtOCP(HL),

∴∠DOP=∠COP

ODOC

OPCD;

方法2、∵PD,PC是⊙O的切線,

PDPC,

ODOC,

P,OCD的中垂線上,

OPCD

2)如圖,連接OD,OC,

OAODOCOB2

∴∠ADO=∠DAO50°,∠BCO=∠CBO70°

∴∠AOD80°,∠BOC40°

∴∠COD60°,

ODOC,

∴△COD是等邊三角形,

由(1)知,∠DOP=∠COP30°,

RtODP中,OP

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一人站在兩等高的路燈之間走動(dòng),為人在路燈照射下的影子,為人在路燈照射下的影子.當(dāng)人從點(diǎn)走向點(diǎn)時(shí)兩段影子之和的變化趨勢(shì)是(

A.先變長(zhǎng)后變短B.先變短后變長(zhǎng)

C.不變D.先變短后變長(zhǎng)再變短

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角頂點(diǎn)P133),P2,P3,…均在直線y=﹣x+4上.設(shè)△P1OA1,△P2A1A2,△P3A2A3,…的面積分別為S1,S2,S3,…,根據(jù)圖形所反映的規(guī)律,S2019=( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)和點(diǎn),與軸交于點(diǎn).

1)求此拋物線的解析式;

2)若點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn)(不點(diǎn),重合),過點(diǎn)軸的平行線交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.

①用含的代數(shù)式表示線段的長(zhǎng);

②連接,求的面積最大時(shí)點(diǎn)的坐標(biāo);

3)設(shè)拋物線的對(duì)稱軸與交于點(diǎn),點(diǎn)是拋物線的對(duì)稱軸上一點(diǎn),軸上一點(diǎn),是否存在這樣的點(diǎn)和點(diǎn),使得以點(diǎn)、、、為頂點(diǎn)的四邊形是菱形?如果存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地下停車場(chǎng)的設(shè)計(jì)大大緩解了住宅小區(qū)停車難的問題,如圖是龍泉某小區(qū)的地下停車庫坡道入口的設(shè)計(jì)示意圖,其中,ABBD,∠BAD18°,CBD上,BC0.5m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車輛能否安全駛?cè)耄傉J(rèn)為CD的長(zhǎng)就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長(zhǎng)作為限制的高度.小剛和小亮誰說得對(duì)?請(qǐng)你判斷并計(jì)算出正確的限制高度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95tan18°≈0.325

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019大洋灣鹽城馬拉松”的賽事共有三項(xiàng):A,“全程馬拉松”、B,“半程馬拉松”、C.“迷你健身跑”,小明和小剛參與了該項(xiàng)賽事的志愿者服務(wù)工作,組委會(huì)隨機(jī)將志愿者分配到三個(gè)項(xiàng)目組.

1)小明被分配到“迷你健身跑”項(xiàng)目組的概率為   ;

2)求小明和小剛被分配到不同項(xiàng)目組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論中:

①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).

其中正確的結(jié)論有(

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在綜合實(shí)踐課中,小慧將一張長(zhǎng)方形卡紙如圖1所示裁剪開,無縫隙不重疊的拼成如圖2所示的形狀,且成軸對(duì)稱圖形.裁剪過程中卡紙的消耗忽略不計(jì),若已知,,.

求(1)線段的差值是___

2的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+cx軸交于A(-1,0),B(30)兩點(diǎn),與y軸交于點(diǎn)C. 點(diǎn)D(2,3)在該拋物線上,直線ADy軸相交于點(diǎn)E,點(diǎn)F是直線AD上方的拋物線上的動(dòng)點(diǎn).

1)求該拋物線對(duì)應(yīng)的二次函數(shù)關(guān)系式;

2)當(dāng)點(diǎn)F到直線AD距離最大時(shí),求點(diǎn)F的坐標(biāo);

3)如圖2,點(diǎn)M是拋物線的頂點(diǎn),點(diǎn)P的坐標(biāo)為(0,n),點(diǎn)Q是坐標(biāo)平面內(nèi)一點(diǎn),以A,M,PQ為頂點(diǎn)的四邊形是AM為邊的矩形.①求n的值;②若點(diǎn)T和點(diǎn)Q關(guān)于AM所在直線對(duì)稱,求點(diǎn)T的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案