【題目】如圖,小明利用所學數(shù)學知識測量某建筑物BC高度,采用了如下的方法:小明從與某建筑物底端B在同一水平線上的A點出發(fā),先沿斜坡AD行走260米至坡頂D處,再從D處沿水平方向繼續(xù)前行若干米后至點E處,在E點測得該建筑物頂端C的仰角為72°,建筑物底端B的俯角為63°,其中點ABC、D、E在同一平面內(nèi),斜坡AD的坡度i=12.4,根據(jù)小明的測量數(shù)據(jù),計算得出建筑物BC的高度約為( )米(計算結(jié)果精DE確到0.1米,參考數(shù)據(jù):sin72°≈0.95,tan72°≈3.08,sin63°≈0.89tan63°≈1.96

A.157.1 B.157.4 C.257.4 D.257.1

【答案】D

【解析】

如圖作DHABH,延長DEBCF.則四邊形DHBF是矩形,在RtADH中求出DH,再在RtEFB中求出EF,在RtEFC中求出CF即可解決問題

如圖作DHABH,延長DEBCF

RtADH中,∵AD=260,DHAH=12.4

DH=100m),

∵四邊形DHBF是矩形,

BF=DH=100,

RtEFB中,tan63°=,

EF=,

RtEFC中,FC=EFtan72°,

CF=×3.08≈157.1,

BC=BF+CF=257.1m).

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解中學生規(guī)范書寫漢字情況,某市語言文字工作委員會從市區(qū)初中在校生中抽取了部分學生進行了調(diào)查,把調(diào)查的結(jié)果分為四個等級:級:優(yōu)秀;級:良好;級:合格;級:不合格,并繪制了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解答下列問題:

1)求本次抽樣調(diào)查的學生人數(shù);

2)求圖的度數(shù),并把圖補充完整;

3)調(diào)查人員想從位同學(分別記為,其中為小明)中隨機選擇兩位同學,參加中學生提高書寫漢字水平的座談會,請用列表或畫樹狀圖的方法求出選中小明的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB中點,以BE為邊作正方形BEFG,邊EFCD于點H,在邊BE上取點M使BMBC,作MNBGCD于點L,交FG于點N.歐兒里得在《幾何原本》中利用該圖解釋了.現(xiàn)以點F為圓心,FE為半徑作圓弧交線段DH于點P,連結(jié)EP,記△EPH的面積為S1,圖中陰影部分的面積為S2.若點A,LG在同一直線上,則的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ykx+b經(jīng)過點A02),B(﹣4,0)和拋物線yx2

1)求直線的解析式;

2)將拋物線yx2沿著x軸向右平移,平移后的拋物線對稱軸左側(cè)部分與y軸交于點C,對稱軸右側(cè)部分拋物線與直線ykx+b交于點D,連接CD,當CDx軸時,求平移后得到的拋物線的解析式;

3)在(2)的條件下,平移后得到的拋物線的對稱軸與x軸交于點E,P為該拋物線上一動點,過點P作拋物線對稱軸的垂線,垂足為Q,是否存在這樣的點P,使以點E,PQ為頂點的三角形與AOB相似?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C將線段AB分成兩部分,若AC2BCAB(ACBC),則稱點C為線段AB的黃金分割點.某數(shù)學興趣小組在進行拋物線課題研究時,由黃金分割點聯(lián)想到黃金拋物線,類似地給出黃金拋物線的定義:若拋物線yax2+bx+c,滿足b2ac(b≠0),則稱此拋物線為黃金拋物線.

()若某黃金拋物線的對稱軸是直線x2,且與y軸交于點(08),求y的最小值;

()若黃金拋物線yax2+bx+c(a0)的頂點P(1,3),把它向下平移后與x軸交于A(+30),B(x00),判斷原點是否是線段AB的黃金分割點,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每年的315日是國際消費者權(quán)益日,許多家居商城都會利用這個契機進行打折促銷活動.甲賣家的A商品成本為600元,在標價1000元的基礎上打8折銷售.

1)現(xiàn)在甲賣家欲繼續(xù)降價吸引買主,問最多降價多少元,才能使利潤率不低于20%?

2)據(jù)媒體爆料,有一些賣家先提高商品價格后再降價促銷,存在欺詐行為.乙賣家也銷售A商品,其成本、標價與甲賣家一致,以前每周可售出50件,現(xiàn)乙賣家先將標價提高2m%,再大幅降價24m元,使得A商品在315日那一天賣出的數(shù)量就比原來一周賣出的數(shù)量增加了 m%,這樣一天的利潤達到了20000元,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠MON=120°,點AB分別在OM,ON上,且OA=OB=,將射線OM繞點O逆時針旋轉(zhuǎn)得到OM′,旋轉(zhuǎn)角為α),作點A關于直線OM′的對稱點C,畫直線BC交于OM′與點D,連接ACAD.有下列結(jié)論:

有下列結(jié)論:

①∠BDO + ACD = 90°;

②∠ACB 的大小不會隨著的變化而變化;

③當 時,四邊形OADC為正方形;

面積的最大值為

其中正確的是________________(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,點從點出發(fā),沿著矩形的邊順時針方向運動一周回到點,則點圍成的圖形面積與點運動路程之間形成的函數(shù)關系式的大致圖象是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級某數(shù)學小組在學完《直角三角形的邊角關系》這章后,決定用所學的知識設計遮陽篷(要求:遮陽篷既能最大限度地遮擋夏天炎熱的陽光,又能最大限度地使冬天溫暖的陽光射入室內(nèi)).他們制定了設計方案,并利用課余時間完成了調(diào)查和實地測量.調(diào)查和測量項目及結(jié)果如下表:

項目

內(nèi)容

課題

設計遮陽篷

測量示意圖

如圖,設計了垂直于墻面AC的遮陽篷CDAB表示窗戶的高度.榆次區(qū)一年中,夏至這一天的正午時刻,太陽光線DA與遮陽篷CD的夾角∠ADC最大;冬至這一天的正午時刻,太陽光線DB與遮陽篷CD的夾角∠CDB最。

調(diào)查數(shù)據(jù)

測量數(shù)據(jù)

根據(jù)上述方案及數(shù)據(jù),求遮陽篷的長.

(結(jié)果精確到,參考數(shù)據(jù):,,,,

查看答案和解析>>

同步練習冊答案