已知:如圖,AB、AC分別切⊙O于B、C,D是⊙O上一點(diǎn),∠D=40°,則∠A的度數(shù)等于


  1. A.
    140°
  2. B.
    120°
  3. C.
    100°
  4. D.
    80°
C
分析:連接OB、OC,根據(jù)圓周角定理得∠BOC=2∠=80°,根據(jù)切線的性質(zhì)得∠OBA=∠OCA=90°,再根據(jù)四邊形的內(nèi)角和定理可得∠A=100°.
解答:解:連接OB,OC,
∵∠BOC=2∠D=80°,
∴∠OBA=∠OCA=90°,
∴∠A=100°.
故選C.
點(diǎn)評:此題涉及到了切線的性質(zhì)定理、圓周角定理以及四邊形的內(nèi)角和定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、已知:如圖,AB、AC分別切⊙O于B、C,D是⊙O上一點(diǎn),∠D=40°,則∠A的度數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB,CD相交于點(diǎn)O,且OA•OD=OB•OC,求證:AC∥DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,AC是弦,直線EF是過點(diǎn)C的⊙O的切線,AD⊥EF于點(diǎn)D.
(1)求證:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

29、已知,如圖,AB∥CD,∠EAB+∠FDC=180°.求證:AE∥FD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB=AC,DB=DC,求證:∠B=∠C.

查看答案和解析>>

同步練習(xí)冊答案