【題目】如圖,在ABC中,DAB的中點(diǎn),DMAC于點(diǎn)M,DNBC于點(diǎn)N,DM=DN.

1)求證:AM=BN;

2AC=BC.

【答案】1)見解析;2)見解析.

【解析】

對于(1),連接CD,利用HL定理,先證明DAM≌△DBN,再由全等三角形對應(yīng)邊相等求得結(jié)論;
對于(2),由DM=DNDMACM,DNBCN,可證得RtCDMRtCDN,則CM=CN,再由(1)的結(jié)論即可得證.

證明:(1)連接CD,如圖所示,

DAB的中點(diǎn),
AD=BD.
又∵DM=DNDMACM,DNBCN,
∴△DAM≌△DBNHL),
AM=BN.
2)∵DM=DNDMACM,DNBCN,
RtCDMRtCDNHL),
CM=CN,
AC=AM+CM,BC=BN+CN,
AC=BC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一張三角形紙片ABC,∠A=80°,點(diǎn)DAC邊上一點(diǎn),沿BD方向剪開三角形紙片后,發(fā)現(xiàn)所得兩張紙片均為等腰三角形,則C的度數(shù)可以是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題8分如圖,矩形ABCD中,AB=2,BC=5,E、P分別在AD、BC上,且DE=BP=1

(1)BEC的形狀,并說明理由;

(2)判斷四邊形EFPH是什么特殊四邊形?并證明你的判斷。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖各圖是棱長為1cm的小正方體擺成的,如圖①中,從正面看有1個(gè)正方形,表面積為6cm2;如圖②中,從正面看有3個(gè)正方形,表面積為18cm2;如圖③,從正面看有6個(gè)正方形,表面積為36cm2

(1)6個(gè)圖中,從正面看有多少個(gè)正方形?表面積是多少?

(2)n個(gè)圖形中,從正面看有多少個(gè)正方形?表面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADCBD=DC

C.B=C,BAD=CAD D. B=CBD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,點(diǎn)EAC的中點(diǎn).

(1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;

(2)若⊙O的半徑為2,B=50°,AC=4.8,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABF≌△CDE.

(1)若∠B=30°,∠DCF=40°,求∠EFC的度數(shù);

(2)若BD=10,EF=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王和小李都想去體育館,觀看在我縣舉行的“市長杯”青少年校園 足球聯(lián)賽,但兩人只有一張門票,兩人想通過摸球的方式來決定誰去觀看,規(guī)則如下: 在兩個(gè)盒子內(nèi)分別裝入標(biāo)有數(shù)字 1,2,3,4 的四個(gè)和標(biāo)有數(shù)字 1,2,3 的三個(gè)完全相 同的小球,分別從兩個(gè)盒子中各摸出一個(gè)球,如果所摸出的球上的數(shù)字之和小于 6,那 么小王去,否則就是小李去.

(1)用樹狀圖或列表法求出小王去的概率;

(2)小李說:“這種規(guī)則不公平.”你認(rèn)同他的說法嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面方格中有一個(gè)四邊形ABCD和點(diǎn)O,請?jiān)诜礁裰挟嫵鲆韵聢D形(只要求畫出平移、旋轉(zhuǎn)后的圖形,不要求寫出作圖步驟和過程)

(1)畫出四邊形ABCD以點(diǎn)O為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)90°后得到的四邊形A1B1C1D1;

(2)畫出四邊形A1B1C1D1向右平移3(3個(gè)小方格的邊長)后得到的四邊形A2B2C2D2

(3)填空:若每個(gè)小方格的邊長為1,則四邊形A1B1C1D1與四邊形A2B2C2D2重疊部分的面積為________

查看答案和解析>>

同步練習(xí)冊答案