【題目】如圖,矩形中,,.點(diǎn)上,連接,折疊矩形,點(diǎn)與點(diǎn)都恰好落在上的點(diǎn)處,折痕是、、的對(duì)應(yīng)線段交于點(diǎn),則線段的長(zhǎng)度是______

【答案】;

【解析】

根據(jù)折疊的性得到PC=PF =4,FR=RC,在RtPDC中,求得PD、DF的長(zhǎng),在RtDFR中,求得,證得RtDFRRtGFD,求得,再證得RtEGQRtFGD,即可求解.

∵折疊矩形,點(diǎn)與點(diǎn)都恰好落在上的點(diǎn)處,

PC=PF=PB,

∵矩形中,,,

BC=AD=8AB=CD=3,

PC=PF=BC=4

RtPDC中,PD=,

DF=PD-PF=5-4=1,

根據(jù)折疊的性質(zhì),△PCRPFR,

RC=FR,∠C=PFR=90,

RtDFR中,DF=1,DR=CD-RC=3-FR

,即,

解得:

RtFDRRtFGD中,

FDR+FDG=90,∠FGD+FDG=90

∴∠FDR=FGD,

RtDFRRtGFD,

,即,

DG=,

根據(jù)折疊的性質(zhì),EF=AB=3,∠E=B=90,

EG=EF-GF=3-

∵∠E=DFG=90,∠EGQ=FGD

RtEGQRtFGD,

,即

QG=()

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx-3a≠0)經(jīng)過(guò)點(diǎn)(-2,-3.

1)用a表示b

2)當(dāng)x≥-2時(shí),y≤-2,求拋物線的解析式.

3)無(wú)論a取何值,若一次函數(shù)y2=a2x+m總經(jīng)過(guò)y的頂點(diǎn),求證:m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知二次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn),,對(duì)稱軸為直線,則下列結(jié)論:①;②;③;④是關(guān)于的一元二次方程的一個(gè)根.其中正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根是另一個(gè)根的2倍,則稱這樣的方程為倍根方程.現(xiàn)有下列結(jié)論:方程x2+2x﹣8=0是倍根方程;

若關(guān)于x的方程x2+ax+2=0是倍根方程,則a=±3;

若關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+cx軸的公共點(diǎn)的坐標(biāo)是(2,0)和(4,0);

若點(diǎn)(m,n)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程mx2+5x+n=0是倍根方程.

上述結(jié)論中正確的有(

A. ①② B. ③④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】扶貧工作小組對(duì)果農(nóng)進(jìn)行精準(zhǔn)扶貧,幫助果農(nóng)將一種有機(jī)生態(tài)水果拓寬了市場(chǎng).與去年相比,今年這種水果的產(chǎn)量增加了1000千克,每千克的平均批發(fā)價(jià)比去年降低了1元,批發(fā)銷售總額比去年增加了

1)已知去年這種水果批發(fā)銷售總額為10萬(wàn)元,求這種水果今年每千克的平均批發(fā)價(jià)是多少元?

2)某水果店從果農(nóng)處直接批發(fā),專營(yíng)這種水果.調(diào)查發(fā)現(xiàn),若每千克的平均銷售價(jià)為41元,則每天可售出300千克;若每千克的平均銷售價(jià)每降低3元,每天可多賣出180千克,設(shè)水果店一天的利潤(rùn)為元,當(dāng)每千克的平均銷售價(jià)為多少元時(shí),該水果店一天的利潤(rùn)最大,最大利潤(rùn)是多少?(利潤(rùn)計(jì)算時(shí),其它費(fèi)用忽略不計(jì).)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是正方形,點(diǎn)、分別是、上的點(diǎn),且,連接、交于點(diǎn)

1)如圖①,判斷之間的數(shù)量關(guān)系和位置關(guān)系,并證明;

2)如圖②,連接,點(diǎn)中點(diǎn),若,,求線段的長(zhǎng)度;

3)如圖③,作于點(diǎn),若,求證:點(diǎn)中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從家去上學(xué),先步行一段路,因時(shí)間緊,他改騎共享單車,結(jié)果到學(xué)校時(shí)遲到了7min,其行駛的路程(單位:)與時(shí)間(單位:)的關(guān)系如圖.若他出門時(shí)直接騎共享單車(兩次騎車速度相同),則下列說(shuō)法正確的是( )

A.小明會(huì)遲到2min到校B.小明剛好按時(shí)到校

C.小明可以提前1min到校D.小明可以提前2min到校

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在環(huán)形跑道上同起點(diǎn)、同終點(diǎn)、同方向勻速跑步400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)2秒.在跑步過(guò)程中,甲、乙兩人的距離(單位:)與乙出發(fā)的時(shí)間(單位:)之間的關(guān)系如圖所示,下列說(shuō)法:①甲的速度為;②乙的速度為;③乙出發(fā)時(shí)甲、乙兩人之間的距離為;④甲到達(dá)終點(diǎn)時(shí)乙在終點(diǎn)休息了;⑤,其中的正確的個(gè)數(shù)有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn)(點(diǎn)位于點(diǎn)的左側(cè)),與軸的負(fù)半軸交于點(diǎn)

求點(diǎn)的坐標(biāo).

的面積為

①求這條拋物線相應(yīng)的函數(shù)解析式.

②在拋物線上是否存在一點(diǎn)使得?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案