【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,直線x=-1是對稱軸,有下列判斷:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a;④若(-3,y1),(,y2)是拋物線上兩點,則y1>y2,其中正確的個數(shù)是( )
A. 1個B. 2個C. 3個D. 4個
【答案】C
【解析】
試題 ①根據(jù)直線x=-1是對稱軸,確定b-2a的值;
②根據(jù)x=-2時,y>0確定4a-2b+c的符號;
③根據(jù)x=-4時,y=0,比較a-b+c與-9a的大;
④根據(jù)拋物線的對稱性,得到x=-3與x=1時的函數(shù)值相等判斷即可.
試題解析:①∵直線x=-1是對稱軸,
∴-=-1,即b-2a=0,①正確;
②x=-2時,y>0,
∴4a-2b+c>0,②錯誤;
∵x=-4時,y=0,
∴16a-4b+c=0,又b=2a,
∴a-b+c=-9a,③正確;
④根據(jù)拋物線的對稱性,得到x=-3與x=1時的函數(shù)值相等,
∴y1>y2,④正確,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為20cm,∠ABC=120°.動點P、Q同時從點A出發(fā),其中P以4cm/s的速度,沿A→B→C的路線向點C運動;Q以2cm/s的速度,沿A→C的路線向點C運動.當(dāng)P、Q到達終點C時,整個運動隨之結(jié)束,設(shè)運動時間為t秒.
(1)在點P、Q運動過程中,請判斷PQ與對角線AC的位置關(guān)系,并說明理由;
(2)若點Q關(guān)于菱形ABCD的對角線交點O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N.
①當(dāng)t為何值時,點P、M、N在一直線上?
②當(dāng)點P、M、N不在一直線上時,是否存在這樣的t,使得△PMN是以PN為一直角邊的直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個模型的三視圖如圖所示(單位:m).
(1)請描述這個模型的形狀;
(2)若制作這個模型的木料密度為360 kg/m3,則這個模型的質(zhì)量是多少?
(3)如果用油漆漆這個模型,每千克油漆可以漆4 m2,那么需要多少千克油漆?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:x2﹣6x=(x2﹣6x+9)﹣9=(x﹣3)2﹣9;﹣x2+10=﹣(x2﹣10x+25)+25=﹣(x﹣5)2+25,這一種方法稱為配方法,利用配方法請解以下各題:
(1)按上面材料提示的方法填空:a2﹣4a= = .﹣a2+12a= = .
(2)探究:當(dāng)a取不同的實數(shù)時在得到的代數(shù)式a2﹣4a的值中是否存在最小值?請說明理由.
(3)應(yīng)用:如圖.已知線段AB=6,M是AB上的一個動點,設(shè)AM=x,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長方形MBCN.問:當(dāng)點M在AB上運動時,長方形MBCN的面積是否存在最大值?若存在,請求出這個最大值;否則請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=4,BC=3,如圖1,四邊形DEFG為△ABC的內(nèi)接正方形,則正方形DEFG的邊長為_____.如圖2,若三角形ABC內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于△ABC,則正方形的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知,.
求拋物線的表達式;
在拋物線的對稱軸上是否存在點P,使是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;
點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:制作無蓋盒子
任務(wù)一:如圖1,有一塊矩形紙板,長是寬的2倍,要將其四角各剪去一個正方形,折成高為4cm,容積為的無蓋長方體盒子紙板厚度忽略不計.
請在圖1的矩形紙板中畫出示意圖,用實線表示剪切線,虛線表示折痕.
請求出這塊矩形紙板的長和寬.
任務(wù)二:圖2是一個高為4cm的無蓋的五棱柱盒子直棱柱,圖3是其底面,在五邊形ABCDE中,,,,.
試判斷圖3中AE與DE的數(shù)量關(guān)系,并加以證明.
圖2中的五棱柱盒子可按圖4所示的示意圖,將矩形紙板剪切折合而成,那么這個矩形紙板的長和寬至少各為多少cm?請直接寫出結(jié)果圖中實線表示剪切線,虛線表示折痕紙板厚度及剪切接縫處損耗忽略不計.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在現(xiàn)今“互聯(lián)網(wǎng)+”的時代,密碼與我們的生活已經(jīng)緊密相連,密不可分,而諸如“123456”、生日等簡單密碼又容易被破解,因此利用簡單方法產(chǎn)生一組容易記憶的密碼就很有必要了,有一種用“因式分解”法產(chǎn)生的密碼、方便記憶,其原理是:將一個多項式分解因式,如多項式:因式分解的結(jié)果為,當(dāng)時,此時可以得到數(shù)字密碼171920.
(1)根據(jù)上述方法,當(dāng)時,對于多項式分解因式后可以形成哪些數(shù)字密碼?(寫出三個)
(2)若一個直角三角形的周長是24,斜邊長為10,其中兩條直角邊分別為x、y,求出一個由多項式分解因式后得到的密碼(只需一個即可);
(3)若多項式因式分解后,利用本題的方法,當(dāng)時可以得到其中一個密碼為242834,求m、n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=-x+2與x軸、y軸分別交于點A、C,拋物線y=-x2+bx+c過點A、C,且與x軸交于另一點B,在第一象限的拋物線上任取一點D,分別連接CD、AD,作于點E.
(1)求拋物線的表達式;
(2)求△ACD面積的最大值;
(3)若△CED與△COB相似,求點D的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com