分析 (1)因式分解法求解可得;
(2)公式法求解可得;
(3)公式法求解可得;
(4)配方法求解可得.
解答 解:(1)∵2x(2x+5)-(x-1)(2x+5)=0,
∴(2x+5)(2x-x+1)=0,即(2x+5)(x+1)=0,
則2x+5=0或x+1=0,
解得:$x_1=-\frac{5}{2},x_2=-1$;
(2)∵a=1,b=2,c=-5,
∴△=4-4×1×(-5)=24>0,
則x=$\frac{-2±2\sqrt{6}}{2}$=-1$±\sqrt{6}$;
(3)∵a=1,b=-4,c=-1,
∴△=16-4×1×(-1)=20>0,
則x=$\frac{4±2\sqrt{5}}{2}$=2$±\sqrt{5}$;
(4)∵2x2-3x=-1,
∴x2-$\frac{3}{2}$x=-$\frac{1}{2}$,
則x2-$\frac{3}{2}$x+$\frac{9}{16}$=-$\frac{1}{2}$+$\frac{9}{16}$,即(x-$\frac{3}{4}$)2=$\frac{1}{16}$,
∴x-$\frac{3}{4}$=$\frac{1}{4}$或x-$\frac{3}{4}$=-$\frac{1}{4}$,
∴x=1或x=$\frac{1}{2}$.
點評 本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點選擇合適、簡便的方法是解題的關(guān)鍵
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com