【題目】某駐村扶貧小組實施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進(jìn)行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天西瓜的銷售量y(千克)與銷售單價x(元/千克)的函數(shù)關(guān)系如下圖所示:
(1)求y與x的函數(shù)解析式(也稱關(guān)系式);
(2)求這一天銷售西瓜獲得的利潤的最大值.
【答案】(1)y與x的函數(shù)解析式為;(2)這一天銷售西瓜獲得利潤的最大值為1250元.
【解析】
(1)當(dāng)6x≤10時,由題意設(shè)y=kx+b(k=0),利用待定系數(shù)法求得k、b的值即可;當(dāng)10<x≤12時,由圖象可知y=200,由此即可得答案;
(2))設(shè)利潤為w元,當(dāng)6≦x≤10時,w=-200+1250,根據(jù)二次函數(shù)的性質(zhì)可求得最大值為1250;當(dāng)10<x≤12時,w=200x-1200,由一次函數(shù)的性質(zhì)結(jié)合x的取值范圍可求得w的最大值為1200,兩者比較即可得答案.
(1)當(dāng)6x≤10時,由題意設(shè)y=kx+b(k=0),它的圖象經(jīng)過點(6,1000)與點(10,200),
∴ ,
解得 ,
∴當(dāng)6x≤10時, y=-200x+2200,
當(dāng)10<x≤12時,y=200,
綜上,y與x的函數(shù)解析式為;
(2)設(shè)利潤為w元,
當(dāng)6x≤10時,y=-200x+2200,
w=(x-6)y=(x-6)(-200x+200)=-200+1250,
∵-200<0,6≦x≤10,
當(dāng)x=時,w有最大值,此時w=1250;
當(dāng)10<x≤12時,y=200,w=(x-6)y=200(x-6)=200x-1200,
∴200>0,
∴w=200x-1200隨x增大而增大,
又∵10<x≤12,
∴當(dāng)x=12時,w最大,此時w=1200,
1250>1200,
∴w的最大值為1250,
答:這一天銷售西瓜獲得利潤的最大值為1250元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在正方形中,,是線段上的一動點,連接,過點作交于點.以為直徑作,當(dāng)點從點移動到點時,對應(yīng)點也隨之運(yùn)動,則點運(yùn)動的路程長度為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點A坐標(biāo)為,點B的坐標(biāo)為.將二次函數(shù)的圖象經(jīng)過左(右)平移個單位再上(下)平移個單位得到圖象M,使得圖象M的頂點落在線段AB上.下列關(guān)于a,b的取值范圍,敘述正確的是( )
A.,B.,
C.,D.,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n經(jīng)過點A(3,0)、
B(0,-3),點P是直線AB上的動點,過點P作x軸的垂線交拋物線于點M,設(shè)點P的橫
坐標(biāo)為t.
(1)分別求出直線AB和這條拋物線的解析式.
(2)若點P在第四象限,連接AM、BM,當(dāng)線段PM最長時,求△ABM的面積.
(3)是否存在這樣的點P,使得以點P、M、B、O為頂點的四邊形為平行四邊形?若存在,請直接寫出點P的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結(jié)BD、DP,BD與CF相交于點H,給出下列結(jié)論:①;②△DFP△BPH;③; ④.其中正確的是______.(寫出所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解班級學(xué)生數(shù)學(xué)課前預(yù)習(xí)的具體情況,鄭老師對本班部分學(xué)生進(jìn)行了為期一個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:不達(dá)標(biāo),并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)C類女生有 名,D類男生有 名,將上面條形統(tǒng)計圖補(bǔ)充完整;
(2)扇形統(tǒng)計圖中“課前預(yù)習(xí)不達(dá)標(biāo)”對應(yīng)的圓心角度數(shù)是 ;
(3)為了共同進(jìn)步,鄭老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)機(jī)抽取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個四位數(shù),記千位數(shù)字與個位數(shù)字之和為,十位數(shù)字與百位數(shù)字之和為,如果,那么稱這個四位數(shù)為“對稱數(shù)”
最小的“對稱數(shù)”為 ;四位數(shù)與之和為最大的“對稱數(shù)”,則的值為 ;
一個四位的“對稱數(shù)”,它的百位數(shù)字是千位數(shù)字的倍,個位數(shù)字與十位數(shù)字之和為,且千位數(shù)字使得不等式組恰有個整數(shù)解,求出所有滿足條件的“對稱數(shù)”的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知半圓⊙O的直徑AB=10,弦CD∥AB,且CD=8,E為弧CD的中點,點P在弦CD上,聯(lián)結(jié)PE,過點E作PE的垂線交弦CD于點G,交射線OB于點F.
(1)當(dāng)點F與點B重合時,求CP的長;
(2)設(shè)CP=x,OF=y,求y與x的函數(shù)關(guān)系式及定義域;
(3)如果GP=GF,求△EPF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com