【題目】某學習小組在研究函數(shù)y= x3﹣2x的圖象與性質(zhì)時,已列表、描點并畫出了圖象的一部分.

x

﹣4

﹣3.5

﹣3

﹣2

﹣1

0

1

2

3

3.5

4

y

0


(1)請補全函數(shù)圖象;
(2)方程 x3﹣2x=﹣2實數(shù)根的個數(shù)為
(3)觀察圖象,寫出該函數(shù)的兩條性質(zhì).

【答案】
(1)解:補全函數(shù)圖象如圖所示,


(2)3
(3)解:由圖象知,

①此函數(shù)在實數(shù)范圍內(nèi)既沒有最大值,也沒有最小值,

②此函數(shù)在x<﹣2和x>2,y隨x的增大而增大,

③此函數(shù)圖象過原點,

④此函數(shù)圖象關(guān)于原點對稱.


【解析】

( 2 )如圖1,

作出直線y=﹣2的圖象,

由圖象知,函數(shù)y= x3﹣2x的圖象和直線y=﹣2有三個交點,

∴方程 x3﹣2x=﹣2實數(shù)根的個數(shù)為3,

所以答案是:3.

【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,射線OPAE,∠AOP的角平分線交射線AE于點B

1)若∠A=50°,求∠ABO的度數(shù);

2)如圖2,若點C在射線AE上,OB平分∠AOCAE于點BOD平分∠COPAE于點D,∠ABO-AOB=70°,求∠ADO的度數(shù);

3)如圖3,若∠A=α,依次作出∠AOP的角平分線OB,∠BOP的角平分線OB1,∠B1OP的角平分線OB2,,∠Bn-1OP的角平分線OBn,其中點BB1,B2,Bn-1,Bn都在射線AE上,試求∠ABnO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面三行數(shù):

1

2

3

4

n

3

9

a

81

r

1

3

9

b

s

2

10

c

82

t

1)直接寫出a,bc的值;

2)直接寫出rs,t的值;

3)設xy,z分別為第①②③行的第2019個數(shù),求x+6y+z的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,點C在x軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過點A(5,12),且與邊BC交于點D.若AB=BD,則點D的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“宏揚傳統(tǒng)文化,打造書香校園”活動中,學校計劃開展四項活動:“A﹣國學誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意愿,隨機調(diào)查了部分學生,結(jié)果統(tǒng)計如下:

(1)如圖,希望參加活動C占20%,希望參加活動B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計圖中,希望參加活動D所占圓心角為 度,根據(jù)題中信息補全條形統(tǒng)計圖.

(2)學校現(xiàn)有800名學生,請根據(jù)圖中信息,估算全校學生希望參加活動A有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡:cos21°+cos22°+cos23°+…+cos289°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店購進一批甲、乙兩種款型時尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進價比乙種款型每件的進價少30元.

1)甲、乙兩種款型的T恤衫各購進多少件?

2)商店進價提高60%標價銷售,銷售一段時間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型按標價的五折降價銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

小明遇到這樣問題:

如圖1,在中,,在AB上取一點D,在AC延長線上取一點E,若,判斷PDPE的數(shù)量關(guān)系.

小明通過思考發(fā)現(xiàn),可以采用兩種方法解決向題:

方法一:過點D,交BCF,即可解決向題;

方法二:過點D、點E分別向直線BC引垂錢,垂足分別是F、G,也可解決問題.

請回答:PDPE的數(shù)量關(guān)系是______;

任選上述兩種方法中的一種方法,在圖1中補全圖象,并給出證明;

參考小明思考問題的方法,解決問題:

如圖2,在中,,將AC繞點A順時針旋轉(zhuǎn)度后得到AD,過點D,交AB于點E,,則圖中是否存在與DE相等的線段,請找出來并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,點P從點A出發(fā),沿折線ABCD方向以3cm/s的速度勻速運動;點Q從點D出發(fā),沿線段DC方向以2cm/s的速度勻速運動. 已知兩點同時出發(fā),當一個點到達終點時,另一點也停止運動,設運動時間為t(s).

(1)求CD的長;
(2)當四邊形PBQD為平行四邊形時,求四邊形PBQD的周長;
(3)在點P、Q的運動過程中,是否存在某一時刻,使得△BPQ的面積為20cm2?若存在,請求出所有滿足條件的t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案