【題目】在邊長(zhǎng)為正方形中,點(diǎn)是上,且,點(diǎn)、是對(duì)角線上兩點(diǎn),且.當(dāng)四邊形周長(zhǎng)最小時(shí),則的值________.
【答案】
【解析】
根據(jù)題意得出作EF∥BD且EF=,連結(jié)AF交BD于N,在BD上截取MN=,此時(shí)四邊形CEMN的周長(zhǎng)最小,進(jìn)而利用相似三角形的判定與性質(zhì)得出答案.
作EF∥BD且EF=,連結(jié)AF交BD于N,在BD上截取MN=,延長(zhǎng)AF交BC于P,作FQ⊥BC于Q,則四邊形BMNE的周長(zhǎng)最小,
由∠FEQ=∠DBC=45°,可求得FQ=EQ=1,
∵∠APB=∠FPQ,∠ABP=∠FQP,
∴△PFQ∽△PAB,
∴,
∴,
解得:PQ=,
∴PB=3+=,
由對(duì)稱性可求得tan∠BCN=tan∠PAB=.
∴cos∠BCN=.
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2002年國(guó)際數(shù)學(xué)家大會(huì)在北京召開(kāi),大會(huì)選用了趙爽弦圖作為會(huì)標(biāo)的中心圖案.如圖,由四個(gè)全等的直角三角形與一個(gè)小正方形拼成一個(gè)大正方形.如果大正方形的面積是25,直角三角形較長(zhǎng)的直角邊長(zhǎng)是a,較短的直角邊長(zhǎng)是b,且(a+b)2的值為49,那么小正方形的面積是( 。
A.2B.0.5C.13D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線 的函數(shù)表達(dá)式為,且直線與x軸交于點(diǎn)D.直線與x軸交于點(diǎn)A,且經(jīng)過(guò)點(diǎn)B(4,1),直線與交于點(diǎn).
(1)求點(diǎn)D和點(diǎn)C的坐標(biāo);
(2)求直線的函數(shù)表達(dá)式;
(3)利用函數(shù)圖象寫(xiě)出關(guān)于x,y的二元一次方程組的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問(wèn)題:
(1)在圖1中,請(qǐng)直接寫(xiě)出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系: ;
(2)仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù): 個(gè);
(3)圖2中,當(dāng)∠D=40°,∠B=30°度時(shí),求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】央視舉辦的《中國(guó)詩(shī)詞大會(huì)》受到廣泛的關(guān)注.深圳某中學(xué)學(xué)生就《中國(guó)詩(shī)詞大會(huì)》節(jié)目的喜愛(ài)程度,在校內(nèi)進(jìn)行了問(wèn)卷調(diào)查,并對(duì)問(wèn)卷調(diào)查的結(jié)果分為“非常喜歡”、“比較喜歡”、“感覺(jué)一般”、“不太喜歡”四個(gè)等級(jí),分別記作A. B. C.D;根據(jù)調(diào)查結(jié)果繪制出如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
(1)本次被調(diào)查對(duì)象共有___人;被調(diào)查者“不太喜歡”有___人;
(2)將扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)深圳某中學(xué)南校區(qū)約有5000學(xué)生,請(qǐng)據(jù)此估計(jì)“比較喜歡”的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C 是線段 AB 上一點(diǎn),且△ACD 和△BCE 都是等邊三角形,連接 AE、BD 相交于點(diǎn) O,AE、BD 分別交 CD、CE 于 M、N,連接 MN、OC,則下列所給的結(jié)論中:①AE=BD;②CM=CN;③MN∥AB;④∠AOB=120;⑤OC 平分∠AOB.其中結(jié)論正確的個(gè)數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,按要求畫(huà)出和;
把先向右平移個(gè)單位,再向上平移個(gè)單位,得到;
以圖中的為位似中心,將作位似變換且放大到原來(lái)的兩倍,得到;
直接回答________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)長(zhǎng)為4cm,寬為3cm的長(zhǎng)方形木板在桌面上做無(wú)滑動(dòng)的翻滾(順時(shí)針?lè)较颍,木板點(diǎn)A位置的變化為A→Al→A2,其中第二次翻滾被面上一小木塊擋住,使木板與桌面成30°的角,則點(diǎn)A滾到A2位置時(shí)共走過(guò)的路徑長(zhǎng)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是以O為圓心的半圓的直徑,半徑CO⊥AO,點(diǎn)M是上的動(dòng)點(diǎn),且不與點(diǎn)A、C、B重合,直線AM交直線OC于點(diǎn)D,連結(jié)OM與CM.
(1)若半圓的半徑為10.
①當(dāng)∠AOM=60°時(shí),求DM的長(zhǎng);
②當(dāng)AM=12時(shí),求DM的長(zhǎng).
(2)探究:在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,∠DMC的大小是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com