某軟件公司開發(fā)出一種圖書管理軟件,前期投入的各種費用總共50000元,之后每售出一套軟件,軟件公司還需支付安裝調試費用200元,設銷售套數(shù)x(套)。
(1)試寫出總費用y(元)與銷售套數(shù)x(套)之間的函數(shù)關系式.
(2)該公司計劃以400元每套的價格進行銷售,并且公司仍要負責安裝調試,試問:軟件公司售出多少套軟件時,收入超出總費用?

(1)y=50000+200x;(2)251.

解析試題分析:(1)本題的等量關系式投資的總費用=前期投入的費用+售出軟件后安裝調試的費用.
(2)要使收入超出總費用,那么銷售軟件的收入>投資的總費用.然后得出自變量的取值范圍.
試題解析:(1)設總費用y(元)與銷售套數(shù)x(套),根據(jù)題意得到函數(shù)關系式:y=50000+200x.
(2)設軟件公司至少要售出x套軟件才能收入超出總費用,則有:
400x>50000+200x
解得:x>250.
答:軟件公司至少要售出251套軟件才能收入超出總費用.
考點:一次函數(shù)的應用.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知A(-4,m),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個交點.

(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與軸的交點C的坐標及△AOB的面積;
(3)當取何值時,反比例函數(shù)值大于一次函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

畫出函數(shù)的圖象,利用圖象:
(1)求方程的解;
(2)求不等式的解;
(3)若,求的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線y=kx-2與x軸、y軸分別交于B、C兩點,OB:OC=
 
(1)求B點的坐標和k的值.
(2)若點A(x,y)是第一象限內的直線y=kx-2上的一個動點,當點A運動過程中,①試寫出△AOB的面積S與x的函數(shù)關系式;②探索:當點A運動到什么位置時,△AOB的面積是1.③在②成立的情況下,x軸上是否存在一點P,使△POA是等腰三角形.若存在,請寫出滿足條件的所有P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A(-2,1),B(1,n)兩點.

(1)求反比例函數(shù)和一次函數(shù)的解析式;(6分)
(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.(4分)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,兩摞相同規(guī)格的飯碗整齊地疊放在桌面上,請根據(jù)圖中給的數(shù)據(jù)信息,解答下列問題:

(1)求整齊擺放在桌面上飯碗的高度y(cm)與飯碗數(shù)x(個)之間的一次函數(shù)解析式;
(2)把這兩摞飯碗整齊地擺成一摞時,這摞飯碗的高度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某物體從P點運動到Q點所用時間為7秒,其運動速度v(米每秒)關于時間t(秒)的函數(shù)關系如圖所示.某學習小組經過探究發(fā)現(xiàn):該物體前進3秒運動的路程在數(shù)值上等于矩形AODB的面積.由物理學知識還可知:該物體前n(3<n≤7)秒運動的路程在數(shù)值上等于矩形AODB的面積與梯形BDNM的面積之和.

根據(jù)以上信息,完成下列問題:
(1)當3<n≤7時,用含t的式子表示v;
(2)分別求該物體在0≤t≤3和3<n≤7時,運動的路程s(米)關于時間t(秒)的函數(shù)關系式;并求該物體從P點運動到Q總路程的時所用的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某游泳池有水4000m3,先放水清洗池子.同時,工作人員記錄放水的時間x(單位:分鐘)與池內水量y(單位:m3) 的對應變化的情況,如下表:

時間x(分鐘)

10
20
30
40

水量y(m3

3750
3500
3250
3000

(1)根據(jù)上表提供的信息,當放水到第80分鐘時,池內有水多少m3?
(2)請你用函數(shù)解析式表示y與x的關系,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

若一次函數(shù)的圖象與軸交點的縱坐標為-2,且與兩坐標軸圍成的直角三角形面積為1,試確定此一次函數(shù)的表達式.

查看答案和解析>>

同步練習冊答案