【題目】如圖,在五邊形 ABCDE ,∠A+∠B+∠E=αDP,CP 分別平分EDC,∠BCD,則∠P 的度數(shù)是(

A. 90°+ α B. α90° C. α D. 540° - α

【答案】B

【解析】根據(jù)五邊形的內(nèi)角和等于540°,由∠A+B+E=α,可求∠BCD+CDE的度數(shù),再根據(jù)角平分線的定義可得∠PDC與∠PCD的角度和,進(jìn)一步求得∠P的度數(shù).

∵五邊形的內(nèi)角和等于540°,A+B+E=α,

∴∠BCD+CDE=540°-α,

∵∠BCD、CDE的平分線在五邊形內(nèi)相交于點(diǎn)O,

∴∠PDC+PCD=BCD+CDE)=270°-α,

∴∠P=180°-(270°-α)=α-90°,

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決江北學(xué)校學(xué)生上學(xué)過河難的問題,鄉(xiāng)政府決定修建一座橋,建橋過程中需測量河的寬度(即兩平行河岸AB與MN之間的距離).在測量時(shí),選定河對(duì)岸MN上的點(diǎn)C處為橋的一端,在河岸點(diǎn)A處,測得∠CAB=30°,沿河岸AB前行30米后到達(dá)B處,在B處測得∠CBA=60°,請(qǐng)你根據(jù)以上測量數(shù)據(jù)求出河的寬度.(參考數(shù)據(jù): ≈1.41, ≈1.73,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)動(dòng)銷售人員的積極性,A、B兩公司采取如下工資支付方式:A公司每月2000元基本工資,另加銷售額的2%作為獎(jiǎng)金;B公司每月1600元基本工資,另加銷售額的4%作為獎(jiǎng)金。已知A、B公司兩位銷售員小李、小張1~6月份的銷售額如下表:

(1)請(qǐng)問小李與小張3月份的工資各是多少?

(2)小李1~6月份的銷售額與月份的函數(shù)關(guān)系式是小張1~6月份的銷售額也是月份的一次函數(shù),請(qǐng)求出的函數(shù)關(guān)系式;

(3)如果7~12月份兩人的銷售額也分別滿足(2)中兩個(gè)一次函數(shù)的關(guān)系,問幾月份起小張的工資高于小李的工資。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC是等腰三角形,腰上的高為8cm,面積為40cm2,則該三角形的周長是_______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=2cm,C為 的中點(diǎn),D、E分別是OA、OB的中點(diǎn),則圖中陰影部分的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0
(1)求證:無論k為任何實(shí)數(shù),方程總有實(shí)數(shù)根;
(2)若此方程有兩個(gè)實(shí)數(shù)根x1 , x2 , 且|x1﹣x2|=2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一條直線與反比例函數(shù)y= (x>0)的圖象交于兩點(diǎn)A、B,與x軸交于點(diǎn)C,且點(diǎn)B是AC的中點(diǎn),分別過兩點(diǎn)A、B作x軸的平行線,與反比例函數(shù)y= (x>0)的圖象交于兩點(diǎn)D、E,連接DE,則四邊形ABED的面積為(
A.4
B.
C.5
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD的對(duì)角線交于點(diǎn)E,有AE=EC,BE=ED,以AB為直徑的半圓過點(diǎn)E,圓心為O.
(1)利用圖1,求證:四邊形ABCD是菱形.
(2)如圖2,若CD的延長線與半圓相切于點(diǎn)F,已知直徑AB=8. ①連結(jié)OE,求△OBE的面積.
②求扇形AOE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=3x2向上平移3個(gè)單位,再向左平移2個(gè)單位,那么得到的拋物線的解析式為(  )
A.y=3 +3
B.y=3 +3
C.y=3 -3
D.y=3 -3

查看答案和解析>>

同步練習(xí)冊(cè)答案