【題目】某市新建了圓形文化廣場(chǎng),小杰和小浩準(zhǔn)備不同的方法測(cè)量該廣場(chǎng)的半徑.

1)小杰先找圓心,再量半徑,請(qǐng)你在圖1中,用尺規(guī)作圖的方法幫小杰找到該廣場(chǎng)的圓心(不寫作法,保留作圖痕跡);

2)小浩在廣場(chǎng)邊(如圖2)選取、、三根石柱,量得之間的距離與、之間的距離相等,并測(cè)得長(zhǎng)為240米,的距離為5米.請(qǐng)你幫他求出廣場(chǎng)的半徑;

3)請(qǐng)你解決下面的問(wèn)題:如圖3,的直徑為,弦是弦上的一個(gè)動(dòng)點(diǎn),求出的長(zhǎng)度范圍是多少?

【答案】(1)詳見解析;(2)廣場(chǎng)的半徑1443米;(3.

【解析】

1)作出弦的垂直平分線,再結(jié)合垂徑定理推論得出圓心位置;

2)設(shè)圓心為O,連結(jié) OA、OB,OABCD,根據(jù)A、B之間的距離與A、C之間的距離相等,得出,從而得出BD=DC=BC,再根據(jù)勾股定理得出OB2=OD2+BD2,設(shè)OB=x,即可求出廣場(chǎng)的半徑;

3)過(guò)點(diǎn)OOEAB于點(diǎn)E,連接OB,由垂徑定理可知AE=BE=AB,再根據(jù)勾股定理求出OE的長(zhǎng),由此可得出結(jié)論.

解:如圖1所示,在圓中作任意2條弦的垂直平分線,由垂徑定理可知這2條垂直平分線必定與圓的2條直徑重合,所以交點(diǎn)即為所求;

2)如圖2,連結(jié)、,

,

,

,

(米),

由題意,

中,,

設(shè),則,

解得:,

∴廣場(chǎng)的半徑1443米.

3)如圖3,過(guò)點(diǎn)于點(diǎn),連接,

,

的直徑為,

,

∵垂線段最短,半徑最長(zhǎng),

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】表中所列 的7對(duì)值是二次函數(shù) 圖象上的點(diǎn)所對(duì)應(yīng)的坐標(biāo),其中

x

y

7

m

14

k

14

m

7

根據(jù)表中提供的信息,有以下4 個(gè)判斷:

;② ;③ 當(dāng)時(shí),y 的值是 k;④ 其中判斷正確的是 ( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=8AD=6,點(diǎn)EAB上一點(diǎn),AE=2,點(diǎn)FAD上,將AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上時(shí),折痕EF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(﹣14),且與直線相交于AB兩點(diǎn)(如圖),A點(diǎn)在y軸上,過(guò)點(diǎn)BBC⊥x軸,垂足為點(diǎn)C(﹣3,0).

1)求二次函數(shù)的表達(dá)式;

2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)NAB上方),過(guò)NNP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;

3)在(2)的條件下,點(diǎn)N在何位置時(shí),BMNC相互垂直平分?并求出所有滿足條件的N點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C90°,AC6cm,BC8cm,點(diǎn)P從點(diǎn)A出發(fā)沿AC1cm/s的速度向點(diǎn)C移動(dòng),同時(shí)點(diǎn)QC點(diǎn)出發(fā)沿CB2cm/s的速度向點(diǎn)B移動(dòng).當(dāng)Q運(yùn)動(dòng)到B點(diǎn)時(shí),P,Q停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts

1t為何值時(shí),△PCQ的面積等于5cm2?

2)點(diǎn)PQ在移動(dòng)過(guò)程中,是否存在某一時(shí)刻,使得△PCQ的面積等于△ABC的面積的一半?若存在,求出t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)口袋里裝著白、紅、黑三種顏色的小球(除顏色外形狀大小完全相同),其中白球3個(gè)、紅球2個(gè)、黑球1個(gè).

(1)隨機(jī)從袋中取出一個(gè)球,求取出的球是黑球的概率;

(2)若取出的第一只球是紅球,不將它放回袋里,從袋中余下的球中再隨機(jī)地取出1個(gè),這時(shí)取出的球是黑球的概率是多少?

(3)若取出一個(gè)球,將它放回袋中,從袋中再隨機(jī)地取出一個(gè)球,兩次取出的球都是白球的概率是多少?(用列表法或樹狀圖計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn)(的左側(cè)),與軸交于點(diǎn), 點(diǎn)與點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱.

(1)求拋物線的解析式及點(diǎn)的坐標(biāo):

(2)點(diǎn)是拋物線對(duì)稱軸上的一動(dòng)點(diǎn),當(dāng)的周長(zhǎng)最小時(shí),求出點(diǎn)的坐標(biāo);

(3)點(diǎn)軸上,且,請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線ACBD相交于點(diǎn)O,在DC的延長(zhǎng)線上取一點(diǎn)E,連接OEBC于點(diǎn)F.已知AB=4,BC=6,CE=2,則CF的長(zhǎng)等于(

A. 1 B. 1.5 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,AB=AC,點(diǎn)E、F分別為邊AB、BC上的點(diǎn),且AE=BF,連接CE、AF交于點(diǎn)H,則下列結(jié)論:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;AEAD=AHAF;其中結(jié)論正確的個(gè)數(shù)是

A.1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案