【題目】已知a1+a2+…+a30+a31與b1+b2+…+b30+b31均為等差級(jí)數(shù),且皆有31項(xiàng).若a2+b30=29,a30+b2=﹣9,則此兩等差級(jí)數(shù)的和相加的結(jié)果為多少?( 。
A.300
B.310
C.600
D.620

【答案】B
【解析】解:∵a1+a2+…+a30+a31與b1+b2+…+b30+b31均為等差級(jí)數(shù),
∵a2+b30=29,a30+b2=﹣9,
∴a1+b31+b1+a31=29﹣9,a3+b29+a29+b3=29﹣9,…,
∴a1+a2+…+a30+a31+b1+b2+…+b30+b31=(a2+b30+a30+b2)+(a1+b31+b1+a31)+…+(a16+b16)=15×(29﹣9)+ =310.
故選B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)與式的規(guī)律(先從圖形上尋找規(guī)律,然后驗(yàn)證規(guī)律,應(yīng)用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,點(diǎn)D、EAB上,將ACD、BCE分別沿CD、CE翻折,點(diǎn)A、B分別落在點(diǎn)A′B′的位置,再將A′CD、B′CE分別沿A′C、B′C翻折,點(diǎn)D與點(diǎn)E恰好重合于點(diǎn)O,則∠A′OB′的度數(shù)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)經(jīng)過(guò)點(diǎn)A(4,﹣5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.
(1)求這條拋物線的表達(dá)式;
(2)聯(lián)結(jié)AB、BC、CD、DA,求四邊形ABCD的面積;
(3)如果點(diǎn)E在y軸的正半軸上,且∠BEO=∠ABC,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的周長(zhǎng)是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點(diǎn)D,且OD=3,則△ABC的面積是( 。

A. 20 B. 25 C. 30 D. 35

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠A=60°,∠B=58°.甲、乙兩人想在△ABC外部取一點(diǎn)D,使得△ABC與△DCB全等,其作法如下:
(甲)①作∠A的角平分線L.
②以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,交L于D點(diǎn),則D即為所求.
(乙)①過(guò)B作平行AC的直線L.
②過(guò)C作平行AB的直線M,交L于D點(diǎn),則D即為所求.
對(duì)于甲、乙兩人的作法,下列判斷何者正確?( 。

A.兩人皆正確
B.兩人皆錯(cuò)誤
C.甲正確,乙錯(cuò)誤
D.甲錯(cuò)誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的直角頂點(diǎn)Ax軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3,),點(diǎn)C的坐標(biāo)為(1,0),且∠B=60°,點(diǎn)P為斜邊OB上的一個(gè)動(dòng)點(diǎn),則PA+PC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算,正確的是( )
A.(﹣2)2=4
B.
C.46÷(﹣2)6=64
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB,AC于點(diǎn)MN,再分別以點(diǎn)M,N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法:①AD∠BAC的平分線;②∠ADC=60°;③點(diǎn)DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說(shuō)法的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀)如圖1,四邊形OABC中,OA=a,OC=3,BC=2,

∠AOC=∠BCO=90°,經(jīng)過(guò)點(diǎn)O的直線l將四邊形分成兩部分,直線lOC所成的角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點(diǎn)C落在點(diǎn)D處,我們把這個(gè)操作過(guò)程記為FZ[θ,a].

(理解)

若點(diǎn)D與點(diǎn)A重合,則這個(gè)操作過(guò)程為FZ[45°,3];

(嘗試)

(1)若點(diǎn)D恰為AB的中點(diǎn)(如圖2),求θ;

(2)經(jīng)過(guò)FZ[45°,a]操作,點(diǎn)B落在點(diǎn)E處,若點(diǎn)E在四邊形OABC的邊AB上,求出a的值;若點(diǎn)E落在四邊形OABC的外部,直接寫(xiě)出a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案