【題目】如圖,在平面直角坐標(biāo)系中,四邊形的頂點(diǎn)是坐標(biāo)原點(diǎn),點(diǎn)在第一象限,點(diǎn)在第四象限,點(diǎn)在軸的正半軸上.且,,的長分別是二元一次方程組的解().
(1)求點(diǎn)和點(diǎn)的坐標(biāo);
(2)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn),重合),過點(diǎn)的直線與軸平行,直線交邊或邊于點(diǎn),交邊或邊于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為,線段的長度為.已知時(shí),直線恰好過點(diǎn).
①當(dāng)時(shí),求關(guān)于的函數(shù)關(guān)系式;
②當(dāng)時(shí),求點(diǎn)的橫坐標(biāo)的值.
【答案】(1)A(3,3),B(6,0);(2)當(dāng)時(shí),;(3)滿足條件的P的坐標(biāo)為(2,0)或
【解析】
(1)解方程組得到OB,OC的長度,得到B點(diǎn)坐標(biāo),再根據(jù)△OAB是等腰直角三角形,解出點(diǎn)A的坐標(biāo);
(2)①根據(jù)坐標(biāo)系中兩點(diǎn)之間的距離,QR的長度為點(diǎn)Q與點(diǎn)R縱坐標(biāo)之差,根據(jù)OC的函數(shù)解析式,表達(dá)出點(diǎn)R坐標(biāo),根據(jù)△OPQ是等腰直角三角形得出點(diǎn)Q坐標(biāo),表達(dá)m即可;
②根據(jù)直線l的運(yùn)動(dòng)時(shí)間分類討論,分別求出直線AB,直線BC的解析式,再由QR的長度為點(diǎn)Q與點(diǎn)R縱坐標(biāo)之差表達(dá)出m的函數(shù)解析式,當(dāng)時(shí),列出方程求解.
解:(1)如圖所示,過點(diǎn)A作AM⊥OB,交OB于點(diǎn)M,
解二元一次方程組,得:,
∵,
∴OB=6,OC=5
∴點(diǎn)B的坐標(biāo)為(6,0)
∵∠OAB=90°,OA=AB,
∴△OAB是等腰直角三角形,∠AOM=45°,
根據(jù)等腰三角形三線合一的性質(zhì)可得,
∵∠AOM=45°,則∠OAM=90°-45°=45°=∠AOM,
∴AM=OM=3,所以點(diǎn)A的坐標(biāo)為(3,3)
∴A(3,3),B(6,0)
(2)①由(1)可知,∠AOM=45°,
又PQ⊥OP,
∴△OPQ是等腰直角三角形,
∴PQ=OP=t,
∴點(diǎn)Q(t,t)
如下圖,過點(diǎn)C作CD⊥OB于點(diǎn)D,
∵時(shí),直線恰好過點(diǎn),
∴OD=4,OC=5
在Rt△OCD中,CD=
∴點(diǎn)C(4,-3)
設(shè)直線OC解析式為y=kx,
將點(diǎn)C代入得-3=4k,
∴,
∴,
∴點(diǎn)R(t,)
∴
故當(dāng)時(shí),
②設(shè)AB解析式為
將A(3,3)與點(diǎn)B(6,0)代入得
,解得
所以直線AB的解析式為,
同理可得直線BC的解析式為
當(dāng)時(shí),若,則,解得t=2,∴P(2,0)
當(dāng)時(shí),,若,即,解得t=10(不符合,舍去)
當(dāng)時(shí),Q(t,-t+6),R(t,)
∴
若,即,解得,此時(shí),
綜上所述,滿足條件的P的坐標(biāo)為(2,0)或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=78°,∠B=82°,則∠C=_________,∠D=__________
(2)在探究“等對角四邊形”性質(zhì)時(shí):
①小紅畫了一個(gè)“等對角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立.請你證明此結(jié)論;
②由此小紅猜想:“對于任意‘等對角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請證明;若不正確,請舉出反例(提示:舉反例可畫圖并說明)
(3)已知:在“等對角四邊形”ABCD中,∠DAB=60°,∠ABC=90°,AB=,AD=,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸的交點(diǎn)分別為A、B,與y軸的負(fù)半軸交于點(diǎn)C.已知拋物線的頂點(diǎn)坐標(biāo)為(1,﹣4),點(diǎn)B的坐標(biāo)(3,0).
(1)求該拋物線的解析式.
(2)在該函數(shù)圖象上能否找到一點(diǎn)P,使PO=PC?若能,請求出點(diǎn)P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】盒中有若干枚黑棋和白棋,這些棋除顏色外無其他差別,現(xiàn)讓學(xué)生進(jìn)行摸棋試驗(yàn):每次摸出一枚棋,記錄顏色后放回?fù)u勻.重復(fù)進(jìn)行這樣的試驗(yàn)得到以下數(shù)據(jù):
摸棋的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次數(shù)m | 24 | 51 | 76 | 124 | 201 | 250 |
摸到黑棋的頻率(精確到0.001) | 0.240 | 0.255 | 0.253 | 0.248 | 0.251 | 0.250 |
(1)根據(jù)表中數(shù)據(jù)估計(jì)從盒中摸出一枚棋是黑棋的概率是 ;(精確到0.01)
(2)若盒中黑棋與白棋共有4枚,某同學(xué)一次摸出兩枚棋,請計(jì)算這兩枚棋顏色不同的概率,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校初二年級在元旦匯演中需要外出租用同一種服裝若干件,已知在沒有任何優(yōu)惠的情況下,同時(shí)在甲服裝店租用2件和乙服裝店租用3件共需280元,在甲服裝店租用4件和乙服裝店租用一件共需260元.
(1)求兩個(gè)服裝店提供的單價(jià)分別是多少?
(2)若該種服裝提前一周訂貨則甲乙兩個(gè)租售店都可以給予優(yōu)惠,具體辦法如下:甲服裝店按原價(jià)的八折進(jìn)行優(yōu)惠;在乙服裝店如果租用5件以上,則超出5件的部分可按原價(jià)的六折進(jìn)行優(yōu)惠;設(shè)需要租用()件服裝,選擇甲店則需要元,選擇乙店則需要元,請分別求出,關(guān)于的函數(shù)關(guān)系式;
(3)若租用的服裝在5件以上,請問租用多少件時(shí)甲乙兩店的租金相同?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,分別以AD、BC為邊向內(nèi)作等邊△ADE和等邊△BCF,連接BE、DF.求證:四邊形BEDF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊上的動(dòng)點(diǎn),且AE=BF=CG=DH.
(1)求證:△AEH≌△CGF;
(2)在點(diǎn)E、F、G、H運(yùn)動(dòng)過程中,判斷直線EG是否經(jīng)過某一個(gè)定點(diǎn),如果是,請證明你的結(jié)論;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程
(1)當(dāng)m取何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為,當(dāng)時(shí),求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com