【題目】方程2+▲=3x,▲處被墨水蓋住了,已知方程的解是x=2,那么▲處的數(shù)字是_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作△BOC,使△BOC與△ABO全等,則點(diǎn)C坐標(biāo)為________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】清朝康熙皇帝是我國(guó)歷史上對(duì)數(shù)學(xué)很有興趣的帝王近日,西安發(fā)現(xiàn)了他的數(shù)學(xué)專著,其中有一文《積求勾股法》,它對(duì)“三邊長(zhǎng)為3、4、5的整數(shù)倍的直角三角形,已知面積求邊長(zhǎng)”這一問(wèn)題提出了解法:“若所設(shè)者為積數(shù)(面積),以積率六除之,平方開(kāi)之得數(shù),再以勾股弦各率乘之,即得勾股弦之?dāng)?shù)”.用現(xiàn)在的數(shù)學(xué)語(yǔ)言表述是:“若直角三角形的三邊長(zhǎng)分別為3、4、5的整數(shù)倍,設(shè)其面積為S,則第一步: =m;第二步: =k;第三步:分別用3、4、5乘以k,得三邊長(zhǎng)”.
(1)當(dāng)面積S等于150時(shí),請(qǐng)用康熙的“積求勾股法”求出這個(gè)直角三角形的三邊長(zhǎng);
(2)你能證明“積求勾股法”的正確性嗎?請(qǐng)寫(xiě)出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】a是一個(gè)兩位數(shù),b是一個(gè)三位數(shù),把a放在b的右邊組成一個(gè)五位數(shù),用a,b的代數(shù)式表示所得的五位數(shù)是( 。
A. ba B. 10b+a C. 10000b+a D. 100b+a
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)|﹣2|﹣(2﹣π)0++(﹣2)3
(2)(﹣2x3)2(﹣x2)÷[(﹣x)2]3
(3)(x+y)2(x﹣y)2
(4)(x﹣2y+3z)(x+2y﹣3z)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請(qǐng)你完成余下的證明過(guò)程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說(shuō)明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請(qǐng)你作出猜想:當(dāng)∠AMN=°時(shí),結(jié)論AM=MN仍然成立.(直接寫(xiě)出答案,不需要證明)
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】可樂(lè)和奶茶含有大量的咖啡因,世界衛(wèi)生組織建議青少年每天攝入的咖啡因不能超過(guò)0.000085kg,將數(shù)據(jù)0.000085用科學(xué)記數(shù)法表示為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com