【題目】天貓商城某網(wǎng)店銷售童裝,在春節(jié)即將將來臨之際,開展了市場調(diào)查發(fā)現(xiàn),一款童裝每件進(jìn)價為80元,銷售價為120元時,每天可售出20件;如果每件童裝降價1元,那么平均每天可售出2件.
(1)假設(shè)每件童裝降價元時,每天可銷售 件,每件盈利 元;(用含人代數(shù)式表示)
(2)每件童裝降價多少元時,平均每天盈利最多?每天最多盈利多少元?
【答案】(1)20+2x,;(2)降價為15元時,盈利最多為1250元
【解析】
(1)根據(jù):銷售量=原銷售量+因價格下降而增加的數(shù)量,每件利潤=實際售價-進(jìn)價,列式即可;
(2)把函數(shù)關(guān)系式化為頂點式,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.
解:(1)設(shè)每件童裝降價x元時,每天可銷售20+2x件,每件盈利40-x元,
故答案為:(20+2x),(40-x);
(2)設(shè)每件童裝降價x元,盈利y元,
根據(jù)題意得,y=(20+2x)(40-x)=-2x2+60x+800=-2(x-15)2+1250,
答:每件童裝降價15元時,每天可獲得最多盈利,最多盈利是1250元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】單靠“死”記還不行,還得“活”用,姑且稱之為“先死后活”吧。讓學(xué)生把一周看到或聽到的新鮮事記下來,摒棄那些假話套話空話,寫出自己的真情實感,篇幅可長可短,并要求運用積累的成語、名言警句等,定期檢查點評,選擇優(yōu)秀篇目在班里朗讀或展出。這樣,即鞏固了所學(xué)的材料,又鍛煉了學(xué)生的寫作能力,同時還培養(yǎng)了學(xué)生的觀察能力、思維能力等等,達(dá)到“一石多鳥”的效果。 如圖,由兩個相同的正方體和一個圓錐體組成一個立體圖形,其左視圖是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角△ABC中,CA=CB,點E為△ABC外一點,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.
(1)求證:△CBE為等邊三角形;
(2)若AD=5,DE=7,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標(biāo)桿BC,再在AB的延長線上選擇點D豎起標(biāo)桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△AOB與△A1OB1是以點O為位似中心的位似圖形,且相似比為1:2,點B的坐標(biāo)為(-1,2),則點B1的坐標(biāo)為( )
A.(2,-4)B.(1,-4)C.(-1,4)D.(-4,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某運動品牌對第一季度A、B兩款運動鞋的銷售情況進(jìn)行統(tǒng)計,兩款運動鞋的銷售量及總銷售額如圖10所示:
(1)一月份B款運動鞋的銷售量是A款的,則一月份B款運動鞋銷售了多少雙?
(2)第一季度這兩款運動鞋的銷售單價保持不變,求三月份的總銷售額(銷售額=銷售單價×銷售量);
(3)結(jié)合第一季度的銷售情況,請你對這兩款運動鞋的進(jìn)貨、銷售等方面提出一條建議。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是BC上一點,連接AE,將矩形沿AE翻折,使點B落在CD邊F處,連接AF,在AF上取一點O,以點O為圓心,OF為半徑作⊙O與AD相切于點P.AB=6,BC=
(1)求證:F是DC的中點.
(2)求證:AE=4CE.
(3)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C,D是拋物線y=(x+1)2﹣5上兩點,拋物線的頂點為E,CD∥x軸,四邊形ABCD為正方形,AB邊經(jīng)過點E,則正方形ABCD的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O 上一點,過點C作⊙O的切線DE,AD⊥DE于點D,DE與AB的延長線交于點E,連接AC.
(1)求證:AC平分∠DAE;
(2)若⊙O的半徑為2,∠CAB=35°,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com