學(xué)校選修課上木工制作小組決定制作等腰三角形積木,現(xiàn)從某家具廠找來如圖所示的梯形邊角余料(單位:cm).且制作方案如下:
(1)三角形中至少有一邊長(zhǎng)為10cm;
(2)三角形中至少有一邊上的高為8cm
請(qǐng)你畫出三種不同的分割線,并求出相應(yīng)圖形面積.
分析:由圖形可知,要求有又一邊為10cm,可以將其作為三角形的一斜邊,將另一邊的邊長(zhǎng)截為10cm.利用勾股定理和三角形求面積公式,即可求出.
解答:解:由勾股定理得:AB=
AC2+BC2
=10
,
則如圖(1)AD=AB=10 cm時(shí),BD=6 cm,
S△ABD=
1
2
×8×12
=48 (cm2);
如圖(2)BD=AB=10 cm時(shí),S△ABD=
1
2
×8×10
=40(cm2),
如圖(3)線段AB的垂直平分線交BC延長(zhǎng)線于點(diǎn)D,則AB=10,
設(shè)DC=x,則AD=BD=6+x,
在Rt△ACD中x2+82=(6+x)2,x=
7
3
,BD=
7
3
+6=
25
3
,S△ABD=
1
2
×
25
3
×8
=
100
3

如圖(4)DC=CE=5cm,AC=8cm,
S△ADE=
1
2
×8×10
=40(cm2).
答:可以設(shè)計(jì)出面積分別為48 cm2、40cm2
100
3
cm2的等腰三角形.
點(diǎn)評(píng):此題主要考查了應(yīng)用設(shè)計(jì)與作圖,主要培養(yǎng)學(xué)生對(duì)三角形的認(rèn)識(shí)和對(duì)勾股定理的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)校選修課上木工制作小組決定制作等腰三角形積木,現(xiàn)從某家具廠找來如圖所示的梯形邊角余料(單位:cm).且制作方案如下:
(1)三角形中至少有一邊長(zhǎng)為10 cm;
(2)三角形中至少有一邊上的高為8 cm請(qǐng)你畫出三種不同的分割線,并求出相應(yīng)圖形面積.(要求畫出的三個(gè)等腰三角形的面積不等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省無錫市華仕初中中考模擬(5)數(shù)學(xué)卷(帶解析) 題型:解答題

學(xué)校選修課上木工制作小組決定制作等腰三角形積木,現(xiàn)從某家具廠找來如圖所示的梯形邊角余料(單位:cm).且制作方案如下:
(1)三角形中至少有一邊長(zhǎng)為10 cm;
(2)三角形中至少有一邊上的高為8 cm請(qǐng)你畫出三種不同的分割線,并求出相應(yīng)圖形面積.(要求畫出的三個(gè)等腰三角形的面積不等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

學(xué)校選修課上木工制作小組決定制作等腰三角形積木,現(xiàn)從某家具廠找來如圖所示的梯形邊角余料(單位:cm).且制作方案如下:
(1)三角形中至少有一邊長(zhǎng)為10cm;
(2)三角形中至少有一邊上的高為8cm
請(qǐng)你畫出三種不同的分割線,并求出相應(yīng)圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省無錫市華士實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

學(xué)校選修課上木工制作小組決定制作等腰三角形積木,現(xiàn)從某家具廠找來如圖所示的梯形邊角余料(單位:cm).且制作方案如下:
(1)三角形中至少有一邊長(zhǎng)為10cm;
(2)三角形中至少有一邊上的高為8cm
請(qǐng)你畫出三種不同的分割線,并求出相應(yīng)圖形面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案