【題目】如圖,定義:若雙曲線 (k>0)與它的其中一條對稱軸y=x相交于A、B兩點,則線段AB的長度為雙曲線 (k>0)的對徑.

(1)求雙曲線的對徑.

(2)若雙曲線 (k>0)的對徑是,求k的值.

(3)仿照上述定義,定義雙曲線 (k<0)的對徑.

【答案】(1)2(2)25 (3) 若雙曲線 (k<0)與它的其中一條對稱軸y=-x相交于A、B兩點,則線段AB的長稱為雙曲線 (k<0)的對徑

【解析】解:如圖,過A點作ACx軸于C,

(1)解方程組,得

A點坐標為(1,1),B點坐標為(-1,-1)。

OC=AC=1,OA=OC=。AB=2OA=2,

雙曲線的對徑是2。

(2)雙曲線的對徑為,即AB=,OA=5。

OA=OC=AC,OC=AC=5。點A坐標為(5,5)。

把A(5,5)代入雙曲線 (k>0)得k=5×5=25,即k的值為25。

(3)若雙曲線 (k<0)與它的其中一條對稱軸y=-x相交于A、B兩點,則線段AB的長稱為雙曲線 (k<0)的對徑。

過A點作ACx軸于C,

(1)解方程組,可得到A點坐標為(1,1),B點坐標為(-1,-1),即OC=AC=1,由勾股定理可求AB,于是得到雙曲線的對徑。

(2)根據(jù)雙曲線的對徑的定義得到當雙曲線的對徑為,即AB=,OA=5,根據(jù)OA=OC=AC,則OC=AC=5,得到點A坐標為(5,5),把A(5,5)代入雙曲線 (k>0)即可得到k的值;

(3)雙曲線 (k<0)的一條對稱軸與雙曲線有兩個交點,根據(jù)題目中的定義易得到雙曲線(k<0)的對徑。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為加強校園文化建設,某校準備打造校園文化墻,需用甲、乙兩種石材經(jīng)市場調(diào)查,甲種石材的費用(元)與使用面積間的函數(shù)關系如圖所示,乙種石材的價格為每平方米.

1)求間的函數(shù)解析式;

2)若校園文化墻總面積共,其中使用甲石材,設購買兩種石材的總費用為元,請直接寫出間的函數(shù)解析式;

3)在(2)的前提下,若甲種石材使用面積多于,且不超過乙種石材面積的倍,那么應該怎樣分配甲、乙兩種石材的面積才能使總費用最少?最少總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A1,1),B4,2),C34).

1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;

2)請畫出△ABC關于原點對稱的△A2B2C2;

3)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“中國制造”是世界上認知度最高的標簽之一,因此,我縣越來越多的群眾選擇購買國產(chǎn)空調(diào),已知購買1A型號的空調(diào)比1B型號的空調(diào)少200元,購買2A型號的空調(diào)與3B型號的空調(diào)共需11200元,求A、B兩種型號的空調(diào)的購買價各是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國南水北調(diào)中線工程的起點是丹江口水庫,按照工程計劃,需對原水庫大壩進行混凝土培厚加高,使壩高由原來的162米增加到176.6以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結果精確到0.1,參考數(shù)據(jù):sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩個相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個角的夾邊稱為鄰余線.

(1)如圖1,在中,,的角平分線,分別是,上的點.求證:四邊形是鄰余四邊形;

(2)如圖2,已知,點的垂直平分線上,在邊上,內(nèi)一點, 連接,,,若四邊形是鄰余四邊形,是鄰余線.

有什么位置關系?說明理由.

②判斷形狀,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某市實施城中村改造的過程中,旺鑫拆遷工程隊承包了一項10000 m2的拆遷工程.由于準備工作充分,實際拆遷效率比原計劃提高了25%,提前2天完成了任務,請解答下列問題:

(1)旺鑫拆遷工程隊現(xiàn)在平均每天拆遷多少平方米;

(2)為了盡量減少拆遷給市民帶來的不便,在拆遷工作進行了2天后,旺鑫拆遷工程隊的領導決定加快拆遷工作,將余下的拆遷任務在5天內(nèi)完成,那么旺鑫拆遷工程隊平均每天至少再多拆遷多少平方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為4,ADBC邊上的中線,FAD邊上的動點,EAC邊上一點AE2,EFCF取得最小值時,∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸正半軸相交,其頂點坐標為,下列結論:;②;③;④方程有兩個相等的實數(shù)根,其中正確的結論是________.(只填序號即可).

查看答案和解析>>

同步練習冊答案