【題目】如圖,已知正方形ABCD的對(duì)角線AC、BD交于點(diǎn)O,CE⊥AC與AD邊的延長(zhǎng)線交于點(diǎn)E.
(1)求證:四邊形BCED是平行四邊形;
(2)延長(zhǎng)DB至點(diǎn)F,聯(lián)結(jié)CF,若CF=BD,求∠BCF的大小.
【答案】(1)見解析;(2)∠BCF=15°
【解析】
(1) 利用正方形的性質(zhì)得出AC⊥DB,BC//AD,再利用平行線的判定與性質(zhì)結(jié)合平行四邊形的判定方法得出答案;
(2)利用正方形的性質(zhì)結(jié)合直角三角形的性質(zhì)得出∠OFC=30°,即可得出答案.
解:(1)證明:∵ABCD是正方形,
∴AC⊥DB,BC∥AD
∵CE⊥AC
∴∠AOD=∠ACE=90°
∴BD∥CE
∴BCED是平行四邊形
(2)如圖:連接AF,
∵ABCD是正方形,
∴BD⊥AC,BD=AC=2OB=2OC,
即OB=OC
∴∠OCB=45°
∵ Rt△OCF中, CF=BD=2OC,
∴∠OFC=30°
∴∠BCF=60°-45°=15°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰直角三角形AOB中,已知AO⊥OB,點(diǎn)P、D分別在AB、OB上.
(1)∠A=∠B= ;
(2)如圖1中,若PO=PD,∠OPD=45°,證明△BOP是等腰三角形;
(3)如圖2中,若AB=10,點(diǎn)P在AB上移動(dòng),且滿足PO=PD,DE⊥AB于點(diǎn)E,試問:此時(shí)PE的長(zhǎng)度是否變化?若變化,說明理由;若不變,求出PE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;
(3)如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(1)、(2)變換的路徑總長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年“清明節(jié)”前夕,宜賓某花店用1000元購進(jìn)若干菊花,很快售完,接著又用2500元購進(jìn)第二批
花,已知第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,且每朵花的進(jìn)價(jià)比第一批的進(jìn)價(jià)多元.
(1)第一批花每束的進(jìn)價(jià)是多少元.
(2)若第一批菊花按3元的售價(jià)銷售,要使總利潤(rùn)不低于1500元(不考慮其他因素),第二批每朵菊花的售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,待轉(zhuǎn)盤自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為, 、、分別是、、上的動(dòng)點(diǎn),且.
()求證:四邊形是正方形.
()判斷直線是否經(jīng)過某一定點(diǎn),說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延長(zhǎng)線上.請(qǐng)解答下列問題:
(1)圖中與∠DBE相等的角有: ;
(2)直接寫出BE和CD的數(shù)量關(guān)系;
(3)若△ABC的形狀、大小不變,直角三角形BEC變?yōu)閳D2中直角三角形BED,∠E=90°,且∠EDB=∠C,DE與AB相交于點(diǎn)F.試探究線段BE與FD的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形紙片中,沿過點(diǎn)的直線折疊這個(gè)三角形,使點(diǎn)落在邊上的點(diǎn)處,折痕為,則下列結(jié)論:
①平分;
②;
③若,,,則的周長(zhǎng)為7;
④;
⑤若平分與交于點(diǎn),當(dāng)時(shí),.其中結(jié)論正確的有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圓桌面(桌面中間有一個(gè)直徑為0.4m的圓洞)正上方的燈泡(看作一個(gè)點(diǎn))發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是( )
A. 0.324πm2 B. 0.288πm2 C. 1.08πm2 D. 0.72πm2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com