如圖,在平面直角坐標系中,直線y=kx+2與x軸交于點A,與y軸交于點B,與拋物線y=ax2+bx交于點C、D.已知點C的坐標為(2,1),點D的橫坐標為
1
2

(1)求點D的坐標;
(2)求拋物線的函數(shù)表達式;
(3)拋物線在x軸上方部分是否存在一點P,使△POA的面積比△POB的面積大4?如果存在,求出點P的坐標;如果不存在,說明理由.
(4)將題中的拋物線y=ax2+bx沿x軸平移,當拋物線經(jīng)過點B時,請直接寫出平移的方向和距離.
(1)將點C坐標代入y=kx+2得:
1=2k+2
解得k=-
1
2

則y=-
1
2
x+2
當x=
1
2
時,y=
7
4

故D(
1
2
,
7
4
);

(2)將點C、D坐標代入y=ax2+bx得:
1=4a+2b
7
4
=
1
4
a+
1
2
b

解得:
a=-2
b=
9
2

故y=-2x2+
9
2
x
;

(3)∵y=-
1
2
x+2當y=0時x=4,當x=0時y=2
∴A(4,0),B(0,2)
∴OA=4,OB=2
設(shè)P(m,-2m2+
9m
2

則S△POA=
1
2
×4×(-2m2+
9m
2
)=-4m2+9m
S△POB=
1
2
×2×m=m
當-4m2+9m=m+4時,解得m=1
∴-2m2+
9m
2
=
5
2

∴存在點P(1,
5
2
);

(4)將y=-2x2+
9
2
x
向左平移
17
8
個單位后,經(jīng)過點B.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,已知點A(
3
,0),B(-
3
,0),以點A為圓心,AB為半徑的圓與x軸相交于點B,C,與y軸相交于點D,E.
(1)若拋物線y=
1
3
x2+bx+c經(jīng)過C,D兩點,求拋物線的解析式,并判斷點B是否在該拋物線上;
(2)在(1)中的拋物線的對稱軸上求一點P,使得△PBD的周長最。
(3)設(shè)Q為(1)中的拋物線的對稱軸上的一點,在拋物線上是否存在這樣的點M,使得四邊形BCQM是平行四邊形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線經(jīng)過A、B、C三點,頂點為D,且與x軸的另一個交點為E.
(1)求該拋物線的解析式;
(2)求D和E的坐標,并求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=3x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線交x軸于另一點C(3,0).
(1)求A、B的坐標;
(2)求拋物線的解析式;
(3)在拋物線的對稱軸上是否存在點Q,使△ABQ是等腰三角形?若存在,求出符合條件的Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在平面直角坐標系中,AB、CD都垂直于x軸,垂足分別為B、D,AD與BC相交于E點,已知:A(-2,-6),C(1,-3),一拋物線經(jīng)過A,E,C三點.
(1)求點E的坐標及此拋物線的表達式;
(2)如圖2,如果AB位置不變,將DC向右平移k(k>0)個單位,求△AEC的面積S關(guān)于k的函數(shù)表達式;
(3)在第(2)問中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)99象過點A(5,-1),B(1,1),C(-1,2),求此二次函數(shù)9解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,對稱軸為直線x=-
7
2
的拋物線經(jīng)過點A(-6,0)和點B(0,4).
(1)求拋物線的解析式和頂點坐標;
(2)設(shè)點E(x,y)是拋物線上的一個動點,且位于第三象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求?OEAF的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當?OEAF的面積為24時,請判斷?OEAF是否為菱形?
②是否存在點E,使?OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.•

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖已知拋物線y=mx2+nx+p與y=x2+6x+5關(guān)于y軸對稱,并與y軸交于點M,與x軸交于點A和B.
(1)求出y=mx2+nx+p的解析式,試猜想出一般形式y(tǒng)=ax2+bx+c關(guān)于y軸對稱的二次函數(shù)解析式(不要求證明);
(2)若AB中點是C,求sin∠CMB;
(3)如果一次函數(shù)y=kx+b過點M,且于y=mx2+nx+p相交于另一點N(i,j),如果i≠j,且i2-i+z=0和j2-j+z=0,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

定義[a,b,c]為函數(shù)y=axw+bx+c的特征數(shù),下面給出特征數(shù)為[wm,1-m,-1-m]的函數(shù)的一些結(jié)論:
①當m=-3時,函數(shù)圖象的頂點坐標是(
1
3
,
8
3
);
②當m>大時,函數(shù)圖象截x軸所得的線段長度大于
3
w

③當m<大時,函數(shù)在x>
1
時,y隨x的增大而減我;
④當m≠大時,函數(shù)圖象經(jīng)過x軸上一一定點.
其1正確的結(jié)論有______.(只需填寫序號)

查看答案和解析>>

同步練習冊答案