【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4.動(dòng)點(diǎn)O在邊CA上移動(dòng),且⊙O的半徑為2.
(1)若圓心O與點(diǎn)C重合,則⊙O與直線AB________; (2)當(dāng)OC等于________時(shí),⊙O與直線AB相切.
【答案】相離
【解析】
(1)當(dāng)圓心O與點(diǎn)C重合時(shí),根據(jù)勾股定理求AB的長(zhǎng),利用“面積法”求點(diǎn)C到AB的距離,再與半徑比較即可判斷位置關(guān)系;
(2)作ON⊥AB,使ON=2,利用相似三角形的性質(zhì)可求此時(shí)OC的長(zhǎng).
(1)作CM⊥AB,垂足為M
在Rt△ABC中,AB==5
∵ACBC=ABCM
∴CM=∵>2
∴O與直線AB相離.
(2)如圖,設(shè)O與AB相切,切點(diǎn)為N,連接ON
則ON⊥AB∴ON∥CM
∴△AON∽△ACM∴=
設(shè)OC=x,則AO=3x
∴=∴x=
∴當(dāng)CO=時(shí),O與直線AB相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)(x>0)和(x>0)的圖象分別是和.設(shè)點(diǎn)P在上,PA∥y軸交于點(diǎn)A,PB∥x軸,交于點(diǎn)B,△PAB的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對(duì)不同口味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問(wèn)題:
(1)本次調(diào)查的學(xué)生有多少人?
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是_____;
(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)圓柱體形零件,削去了占底面圓的四分之一部分的柱體(如圖),現(xiàn)已畫出了主視圖與俯視圖.
(1)請(qǐng)只用直尺和圓規(guī),將此零件的左視圖畫在規(guī)定的位置(不必寫作法,只須保留作圖痕跡);
(2)若此零件底面圓的半徑r=2cm,高h=3cm,求此零件的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,PC切⊙O于C交AB的延長(zhǎng)線于點(diǎn)P,∠CAP=35°,那么∠CPO的度數(shù)等于( )
A. 15° B. 20° C. 25° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)E是上的一點(diǎn),∠DBC=∠BED.
(1)求證:BC是⊙O的切線;
(2)已知AD=3,CD=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)興趣小組的同學(xué)在一次活動(dòng)中,為了測(cè)量某建筑物AB的高,他們來(lái)到另一建筑物CD上的點(diǎn)C處進(jìn)行觀察,如圖所示,他們測(cè)得建筑物AB頂部A的仰角為30°,底部B的俯角為45°,已知建筑物AB、CD的距離DB為12m,求建筑物AB的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別在AB、AC上,且CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得到CF,連接EF.
(1)求證:△BDC≌△EFC;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn)A(﹣3,﹣3).
(1)求正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)把直線OA向上平移后與反比例函數(shù)的圖象交于點(diǎn)B(﹣6,m),與x軸交于點(diǎn)C,求m的值和直線BC的表達(dá)式;
(3)在(2)的條件下,直線BC與y軸交于點(diǎn)D,求以點(diǎn)A,B,D為頂點(diǎn)的三角形的面積;
(4)在(3)的條件下,點(diǎn)A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內(nèi)的圖象上是否存在一點(diǎn)E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com