已知二次函數(shù)

(1)證明:不論取何值,該函數(shù)圖象與軸總有兩個公共點;
(2)若該函數(shù)的圖象與軸交于點(0,5),求出頂點坐標,并畫出該函數(shù)圖象.
(1)證明見解析;(2)頂點坐標:(,),圖像見解析.

試題分析:(1)證明對應的一元二次方程﹣x2+(m﹣3)x+m=0的根的判別式大于0,即可作出判斷;
(2)把x=0,y=5代入拋物線的解析式,即可得到一個關于m的方程,從而求得m的值,得到函數(shù)的解析式,然后把解析式化成頂點式的形式,即可求解.
試題解析:(1)令,
,,
==,
∵(m-1)2≥0
∴(m-1)2+8>0
∴b2-4ac>0
∴不論取何值,該函數(shù)圖象與軸總有兩個公共點;
(2)把,代入 
 
= 
頂點坐標:(,).
函數(shù)圖象:
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線的解析式為
(1)求證:不論m為何值,此拋物線與x軸必有兩個交點,且兩交點A、B之間的距離為定值;
(2)設點P為此拋物線上一點,若△PAB的面積為8,求符合條件的點P的坐標;
(3)若(2)中△PAB的面積為S(S>0),試根據(jù)面積S值的變化情況,確定符合條件的點P的個數(shù)(本小題直接寫出結論,不要求寫出計算、證明過程).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=a(x-m)2-2a(x-m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個公共點;
(2)設該函數(shù)的圖象的頂點為C,與x軸交于A,B兩點,當△ABC是等腰直角三角形時,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在平面直角坐標系中,Rt△OBC的兩條直角邊分別落在x軸、y軸上,且OB=1,OC=3,將△OBC繞原點O順時針旋轉90°得到△OAE,將△OBC沿y軸翻折得到△ODC,AE與CD交于點F.

(1)若拋物線過點A、B、C, 求此拋物線的解析式;
(2)求△OAE與△ODC重疊的部分四邊形ODFE的面積;
(3)點M是第三象限內拋物線上的一動點,點M在何處時△AMC的面積最大?最大面積是多少?求出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一條拋物線經過原點和點C(8,0),A、B是該拋物線上的兩點,AB∥x軸,OA=5,AB=2.點E在線段OC上,作∠MEN=∠AOC,使∠MEN的一邊始終經過點A,另一邊交線段BC于點F,連接AF.

(1)求拋物線的解析式;
(2)當點F是BC的中點時,求點E的坐標;
(3)當△AEF是等腰三角形時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知拋物線經過兩點,則的大小關系是       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)y=x2+bx+c的圖象經過點(4,3),(3,0).
(1)b=        ,c=         ;
(2)選取適當?shù)臄?shù)據(jù)填寫下表,并在右圖的直角坐標系中畫出該函數(shù)的圖像;
x

 
 
 
 
 

y

 
 
 
 
 

 
(3)若將此圖象沿x軸向左平移3個單位,直接寫出平移后圖象所對應的函數(shù)關系式           .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

A,B,C是拋物線上三點,的大小關系為(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論中正確的是(   )
A.a>0B.當x>1時,y隨x的增大而增大
C.c<0D.3是方程ax2+bx+c=0的一個根

查看答案和解析>>

同步練習冊答案