(2013•寶應(yīng)縣一模)如圖,點(diǎn)O是矩形ABCD的中心,E是AB上的點(diǎn),沿CE折疊后,點(diǎn)B恰好與點(diǎn)O重合,若BC=3,求折痕CE的長.
分析:根據(jù)折疊的性質(zhì)可得△CBE和△COE全等,再根據(jù)全等三角形對(duì)應(yīng)角相等,全等三角形對(duì)應(yīng)邊相等可得∠B=∠COE=90° CO=CB,∠BCE=∠ACE,然后判斷出OE是AC的垂直平分線,根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得CE=AE,根據(jù)等邊對(duì)等角求出∠ACE=∠CAE,從而得到∠BCE=∠ACE=∠CAE,再根據(jù)直角三角形的兩銳角互余求出∠BCE=30°,然后解直角三角形求出折痕CE的長即可.
解答:解:由折疊可知:△CBE≌△COE,
∴∠B=∠COE=90°,CO=CB=3,∠BCE=∠ACE,
∵O是矩形ABCD中心,
∴CO=AO,
∴OE垂直平分AC,
∴CE=AE,
∴∠ACE=∠CAE,
在Rt△ABC中,∠BCE=∠ACE=∠CAE,
在Rt△ABC中,∠BCE=30°,
∵BC=3,
∴CE=BC÷cos30°=3÷
3
2
=2
3
點(diǎn)評(píng):本題考查了翻折變換,主要利用了折疊前后的兩個(gè)三角形全等,矩形的性質(zhì),線段垂直平分線的判定與線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),等邊對(duì)等角的性質(zhì),綜合題,但難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶應(yīng)縣一模)下列計(jì)算中,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶應(yīng)縣一模)小軍的期末總評(píng)成績由平時(shí)、期中、期末成績按權(quán)重比1:1:8 組成,現(xiàn)小軍平時(shí)考試得90分,期中考試得60分,要使他的總評(píng)成績不低于79分,那么小軍的期末考試成績x滿足的條件是
80
80

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶應(yīng)縣一模)如圖,⊙O為銳角△ABC的外接圓,已知∠BAO=18°,那么∠C的度數(shù)為
72
72
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶應(yīng)縣一模)如圖,將△APB繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)90°后得到△A1P1B.若BP=2,則線段PP1的長為
2
2
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶應(yīng)縣一模)拋物線y=-x2+bx+c與x軸交與A(1,0),B(-3,0)兩點(diǎn),
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線與y軸交于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案